a Department of Biology II and Center for Integrated Protein Science Munich (CIPSM) , LMU Munich , Martinsried , Germany.
Nucleus. 2017 May 4;8(3):279-286. doi: 10.1080/19491034.2017.1292194. Epub 2017 Feb 23.
Dissecting the complex network of epigenetic modifications requires tools that combine precise recognition of DNA sequences with the capability to modify epigenetic marks. The CRISPR/Cas system has been proven to be a valuable addition to existing methodologies that fulfill these tasks. So far, sequence-specific editing of epigenetic modifications such as DNA methylation and histone posttranslational modifications relied on direct fusions of enzymatically inactivated Cas9 (dCas9) with epigenetic effectors. Here, we report a novel, modular system that facilitates the recruitment of any GFP-tagged protein to desired genomic loci. By fusing dCas9 to a GFP-binding nanobody (GBP) we demonstrate that prevalent epigenetic modifications at mouse major satellite repeats can be erased or set de novo by recruiting GFP-coupled catalytic domains of TET1 and DNMT3A, respectively. Furthermore, we construct an inducible expression system that enables a temporally controlled expression of both GBP-dCas9 and the effector protein. Thus, our approach further expands the CRISPR/Cas toolbox for site-specific manipulation of epigenetic modifications with a modular and easy-to-use system.
解析表观遗传修饰的复杂网络需要将 DNA 序列的精确识别与修饰表观遗传标记的能力结合起来的工具。CRISPR/Cas 系统已被证明是对现有满足这些任务的方法学的一个有价值的补充。到目前为止,对 DNA 甲基化和组蛋白翻译后修饰等表观遗传修饰的序列特异性编辑依赖于酶失活 Cas9(dCas9)与表观遗传效应物的直接融合。在这里,我们报告了一种新的、模块化的系统,该系统可以将任何 GFP 标记的蛋白募集到所需的基因组位置。通过将 dCas9 融合到 GFP 结合纳米抗体(GBP)上,我们证明了在小鼠主要卫星重复序列上普遍存在的表观遗传修饰可以通过分别募集 GFP 偶联的 TET1 和 DNMT3A 的催化结构域来被擦除或从头设置。此外,我们构建了一个诱导表达系统,该系统可以在时间上控制 GBP-dCas9 和效应蛋白的表达。因此,我们的方法通过使用模块化和易于使用的系统,进一步扩展了 CRISPR/Cas 工具包,用于对表观遗传修饰进行特异性操作。