Suppr超能文献

一种用于在双层流中生成、捕获和释放液滴的多功能微流控平台。

A multifunctional microfluidic platform for generation, trapping and release of droplets in a double laminar flow.

作者信息

Carreras Maria Pilar, Wang Sihong

机构信息

Department of Biomedical Engineering, City University of New York - City College, New York, NY 10031, USA.

Department of Biomedical Engineering, City University of New York - City College, New York, NY 10031, USA.

出版信息

J Biotechnol. 2017 Jun 10;251:106-111. doi: 10.1016/j.jbiotec.2017.04.030. Epub 2017 Apr 25.

Abstract

Droplet microfluidics, involving micrometer-sized emulsion of droplets is a growing subfield of microfluidics which attracts broad interest due to its application on biological assays. Droplet-based systems have been used as microreactors as well as to encapsulate many biological entities for biomedical and biotechnological applications. Here, a novel microfluidic device is presented for the generation, trapping and release of aqueous including hydrogel droplets in a double laminar oil flow. This platform enables the storage and release of picoliter-sized droplets in two different carrier oils by using hydrodynamic forces without the need of electrical forces or optical actuators. Furthermore, this design allows droplets to be selectively and simultaneously exposed to two different conditions and collected on demand. Successful encapsulation of hepatoma H35 cells was performed on-chip. Viability of cell-laden droplets was performed off-chip to assess the potential applications in 3D encapsulation cell culture and drug discovery assays.

摘要

液滴微流控技术涉及微米级的液滴乳液,是微流控技术中一个不断发展的子领域,因其在生物检测中的应用而引起广泛关注。基于液滴的系统已被用作微反应器,也用于封装许多生物实体,以用于生物医学和生物技术应用。在此,我们展示了一种新型微流控装置,用于在双层层流油流中生成、捕获和释放包括水凝胶液滴在内的水性液滴。该平台能够通过流体动力在两种不同的载油中存储和释放皮升级的液滴,而无需电力或光学致动器。此外,这种设计允许液滴选择性地同时暴露于两种不同条件下,并按需收集。在芯片上成功实现了肝癌H35细胞的封装。对载有细胞的液滴进行了芯片外活力检测,以评估其在3D封装细胞培养和药物发现检测中的潜在应用。

相似文献

1
A multifunctional microfluidic platform for generation, trapping and release of droplets in a double laminar flow.
J Biotechnol. 2017 Jun 10;251:106-111. doi: 10.1016/j.jbiotec.2017.04.030. Epub 2017 Apr 25.
2
Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.
Macromol Biosci. 2015 Dec;15(12):1641-6. doi: 10.1002/mabi.201500226. Epub 2015 Jul 21.
3
A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles.
Macromol Biosci. 2012 Jul;12(7):946-51. doi: 10.1002/mabi.201100351. Epub 2012 Feb 7.
4
Cell-laden microgel prepared using a biocompatible aqueous two-phase strategy.
Biomed Microdevices. 2017 Sep;19(3):55. doi: 10.1007/s10544-017-0198-8.
6
On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system.
Lab Chip. 2011 Aug 7;11(15):2561-8. doi: 10.1039/c1lc20150f. Epub 2011 Jun 17.
7
Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
Colloids Surf B Biointerfaces. 2016 Nov 1;147:1-8. doi: 10.1016/j.colsurfb.2016.07.041. Epub 2016 Jul 20.
8
Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
Acc Chem Res. 2017 Jan 17;50(1):22-31. doi: 10.1021/acs.accounts.6b00370. Epub 2016 Dec 28.
9
Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
Anal Chem. 2019 Apr 16;91(8):5133-5141. doi: 10.1021/acs.analchem.8b05689. Epub 2019 Mar 27.
10
A droplet-to-digital (D2D) microfluidic device for single cell assays.
Lab Chip. 2015 Jan 7;15(1):225-36. doi: 10.1039/c4lc00794h.

引用本文的文献

1
Deep learning with microfluidics for on-chip droplet generation, control, and analysis.
Front Bioeng Biotechnol. 2023 Jun 7;11:1208648. doi: 10.3389/fbioe.2023.1208648. eCollection 2023.
2
Reinforcement Learning for Dynamic Microfluidic Control.
ACS Omega. 2018 Aug 29;3(8):10084-10091. doi: 10.1021/acsomega.8b01485. eCollection 2018 Aug 31.
3
Detection of viability of micro-algae cells by optofluidic hologram pattern.
Biomicrofluidics. 2018 Mar 29;12(2):024111. doi: 10.1063/1.5021179. eCollection 2018 Mar.

本文引用的文献

1
Spontaneous transfer of droplets across microfluidic laminar interfaces.
Lab Chip. 2016 Nov 1;16(22):4326-4332. doi: 10.1039/c6lc01022a.
2
Enhanced osteogenesis of human mesenchymal stem cells by periodic heat shock in self-assembling peptide hydrogel.
Tissue Eng Part A. 2013 Mar;19(5-6):716-28. doi: 10.1089/ten.TEA.2012.0070. Epub 2012 Nov 23.
3
On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase.
Lab Chip. 2011 Apr 7;11(7):1271-5. doi: 10.1039/c0lc00484g. Epub 2011 Feb 15.
4
A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules.
Lab Chip. 2011 Mar 21;11(6):1030-5. doi: 10.1039/c0lc00381f. Epub 2011 Jan 7.
5
High-efficiency single-molecule detection within trapped aqueous microdroplets.
J Phys Chem B. 2010 Dec 9;114(48):15766-72. doi: 10.1021/jp105749t. Epub 2010 Nov 11.
6
On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays.
Lab Chip. 2009 Jun 7;9(11):1504-6. doi: 10.1039/b903468d. Epub 2009 Apr 22.
9
Droplet-based microfluidic system for individual Caenorhabditis elegans assay.
Lab Chip. 2008 Sep;8(9):1432-5. doi: 10.1039/b808753a. Epub 2008 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验