Smith Matthew D, Pedesseau Laurent, Kepenekian Mikaël, Smith Ian C, Katan Claudine, Even Jacky, Karunadasa Hemamala I
Department of Chemistry , Stanford University , Stanford , CA 94305 , USA . Email:
Fonctions Optiques pour les Technologies de l'information , CNRS , INSA de Rennes , 35708 Rennes , France . Email:
Chem Sci. 2017 Mar 1;8(3):1960-1968. doi: 10.1039/c6sc02848a. Epub 2016 Nov 10.
We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layers substantially alter the optical and electronic properties of the inorganic layers. By calculating the spatially resolved dielectric profiles of the organic and inorganic layers within the hybrid structure, we show that the intercalants afford organic layers that are more polarizable than the inorganic layers. This strategy reduces the confinement of excitons generated in the inorganic layers and affords the lowest exciton binding energy for an = 1 perovskite of which we are aware. We also demonstrate a method for computationally evaluating the exciton's binding energy by solving the Bethe-Salpeter equation for the exciton, which includes an determination of the material's dielectric profile across organic and inorganic layers. This new semi-empirical method goes beyond the imprecise phenomenological approximation of abrupt dielectric-constant changes at the organic-inorganic interfaces. This work shows that incorporation of polarizable molecules in the organic layers, through intercalation or covalent attachment, is a viable strategy for tuning 2D perovskites towards mimicking the reduced electronic confinement and isotropic light absorption of 3D perovskites while maintaining the greater synthetic tunability of the layered architecture.
我们表明,合成后小分子嵌入可显著降低二维杂化钙钛矿的电子限域效应。通过结合实验和理论方法,我们解释了在旨在稳定嵌入剂的层状钙钛矿中嵌入高极化分子的结构、光学和电子效应。有机层中的极化分子会显著改变无机层的光学和电子性质。通过计算杂化结构中有机层和无机层的空间分辨介电分布,我们发现嵌入剂使有机层比无机层更具极化性。这种策略减少了无机层中激子的限域效应,并为我们所知的n = 1的钙钛矿提供了最低的激子结合能。我们还展示了一种通过求解激子的贝特-萨尔皮特方程来计算评估激子结合能的方法,该方程包括确定材料在有机层和无机层间的介电分布。这种新的半经验方法超越了在有机-无机界面处介电常数突变的不精确现象学近似。这项工作表明,通过嵌入或共价连接在有机层中引入极化分子,是一种可行的策略,可将二维钙钛矿调整为模仿三维钙钛矿降低的电子限域效应和各向同性光吸收,同时保持层状结构更大的合成可调性。