Suppr超能文献

智能微型游泳器通过强化学习实现流动导航。

Flow Navigation by Smart Microswimmers via Reinforcement Learning.

作者信息

Colabrese Simona, Gustavsson Kristian, Celani Antonio, Biferale Luca

机构信息

Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.

Department of Physics, University of Gothenburg, Origovägen 6 B, 41296 Göteborg, Sweden.

出版信息

Phys Rev Lett. 2017 Apr 14;118(15):158004. doi: 10.1103/PhysRevLett.118.158004. Epub 2017 Apr 12.

Abstract

Smart active particles can acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. Their goal is to learn the best way to navigate by exploiting the underlying flow whenever possible. As an example, we focus our attention on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, given the constraints enforced by fluid mechanics. By means of numerical experiments, we show that swimmers indeed learn nearly optimal strategies just by experience. A reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This Letter illustrates the potential of reinforcement learning algorithms to model adaptive behavior in complex flows and paves the way towards the engineering of smart microswimmers that solve difficult navigation problems.

摘要

智能活性粒子可以从简单的力学线索中获取关于流体环境的一些有限知识,并对其偏好的转向方向施加控制。它们的目标是尽可能通过利用潜在的流动来学习最佳的导航方式。例如,我们将注意力集中在智能重力泳动体上。这些是活性粒子,其任务是在流体力学施加的约束条件下,在某个时间范围内到达最高海拔。通过数值实验,我们表明泳动体确实仅通过经验就能学习到近乎最优的策略。强化学习算法使粒子即使在困难情况下也能学习到有效的策略,在没有控制的情况下,它们最终会被流动结构困住。这些策略非常复杂,很难预先轻易猜到。这封信阐述了强化学习算法在对复杂流动中的自适应行为进行建模方面的潜力,并为解决困难导航问题的智能微泳动体的工程设计铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验