Suppr超能文献

智能主动粒子的最优导航:方向和距离感知。

Optimal navigation of a smart active particle: directional and distance sensing.

机构信息

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.

出版信息

Eur Phys J E Soft Matter. 2023 Jun 19;46(6):48. doi: 10.1140/epje/s10189-023-00309-3.

Abstract

We employ Q learning, a variant of reinforcement learning, so that an active particle learns by itself to navigate on the fastest path toward a target while experiencing external forces and flow fields. As state variables, we use the distance and direction toward the target, and as action variables the active particle can choose a new orientation along which it moves with constant velocity. We explicitly investigate optimal navigation in a potential barrier/well and a uniform/ Poiseuille/swirling flow field. We show that Q learning is able to identify the fastest path and discuss the results. We also demonstrate that Q learning and applying the learned policy works when the particle orientation experiences thermal noise. However, the successful outcome strongly depends on the specific problem and the strength of noise.

摘要

我们采用强化学习的一种变体 Q 学习,让主动粒子在体验外力和流场的同时,通过自身学习找到通往目标的最快路径。作为状态变量,我们使用距离和朝向目标的方向,作为动作变量,主动粒子可以选择沿着以恒定速度移动的新方向。我们明确研究了在势垒/势阱和均匀/泊肃叶/旋流流场中的最优导航。我们表明 Q 学习能够识别最快路径,并讨论了结果。我们还证明了当粒子方向经历热噪声时,Q 学习和应用所学策略是有效的。然而,成功的结果强烈取决于具体问题和噪声的强度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d3/10279590/aa85fd614606/10189_2023_309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验