Suppr超能文献

人工微游泳者的强化学习。

Reinforcement learning with artificial microswimmers.

机构信息

Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany.

AIMEN Technology Centre, Smart Systems and Smart Manufacturing-Artificial Intelligence and Data Analytics Laboratory, PI. Cataboi, 36418 Pontevedra, Spain.

出版信息

Sci Robot. 2021 Mar 24;6(52). doi: 10.1126/scirobotics.abd9285.

Abstract

Artificial microswimmers that can replicate the complex behavior of active matter are often designed to mimic the self-propulsion of microscopic living organisms. However, compared with their living counterparts, artificial microswimmers have a limited ability to adapt to environmental signals or to retain a physical memory to yield optimized emergent behavior. Different from macroscopic living systems and robots, both microscopic living organisms and artificial microswimmers are subject to Brownian motion, which randomizes their position and propulsion direction. Here, we combine real-world artificial active particles with machine learning algorithms to explore their adaptive behavior in a noisy environment with reinforcement learning. We use a real-time control of self-thermophoretic active particles to demonstrate the solution of a simple standard navigation problem under the inevitable influence of Brownian motion at these length scales. We show that, with external control, collective learning is possible. Concerning the learning under noise, we find that noise decreases the learning speed, modifies the optimal behavior, and also increases the strength of the decisions made. As a consequence of time delay in the feedback loop controlling the particles, an optimum velocity, reminiscent of optimal run-and-tumble times of bacteria, is found for the system, which is conjectured to be a universal property of systems exhibiting delayed response in a noisy environment.

摘要

能够复制活性物质复杂行为的人工微游泳者通常被设计为模仿微观生物的自推进。然而,与活体相比,人工微游泳者适应环境信号的能力有限,或者保留物理记忆以产生优化的涌现行为的能力有限。与宏观生命系统和机器人不同,微观生物和人工微游泳者都受到布朗运动的影响,布朗运动会使它们的位置和推进方向随机化。在这里,我们结合真实世界的人工主动粒子和机器学习算法,在强化学习中探索它们在噪声环境中的自适应行为。我们使用实时控制自热泳主动粒子来证明在这些长度尺度下不可避免的布朗运动的影响下,解决简单标准导航问题的解决方案。我们表明,通过外部控制,可以进行集体学习。关于噪声下的学习,我们发现噪声会降低学习速度、改变最优行为,并且会增加决策的力度。由于控制粒子的反馈回路中的时间延迟,系统中发现了类似于细菌最优跑动和停止时间的最佳速度,这被推测为在噪声环境中表现出延迟响应的系统的普遍特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验