Suppr超能文献

从分子扰动实验推断细胞内信号转导通路。

Inferring Intracellular Signal Transduction Circuitry from Molecular Perturbation Experiments.

机构信息

Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.

Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.

出版信息

Bull Math Biol. 2018 May;80(5):1310-1344. doi: 10.1007/s11538-017-0270-9. Epub 2017 Apr 28.

Abstract

The development of network inference methodologies that accurately predict connectivity in dysregulated pathways may enable the rational selection of patient therapies. Accurately inferring an intracellular network from data remains a very challenging problem in molecular systems biology. Living cells integrate extremely robust circuits that exhibit significant heterogeneity, but still respond to external stimuli in predictable ways. This phenomenon allows us to introduce a network inference methodology that integrates measurements of protein activation from perturbation experiments. The methodology relies on logic-based networks to provide a predictive approximation of the transfer of signals in a network. The approach presented was validated in silico with a set of test networks and applied to investigate the epidermal growth factor receptor signaling of a breast epithelial cell line, MFC10A. In our analysis, we predict the potential signaling circuitry most likely responsible for the experimental readouts of several proteins in the mitogen-activated protein kinase and phosphatidylinositol-3 kinase pathways. The approach can also be used to identify additional necessary perturbation experiments to distinguish between a set of possible candidate networks.

摘要

开发能够准确预测失调途径中连通性的网络推断方法,可能使我们能够合理选择患者的治疗方法。从数据中准确推断细胞内网络仍然是分子系统生物学中的一个极具挑战性的问题。活细胞整合了非常稳健的电路,这些电路表现出显著的异质性,但仍然以可预测的方式对外界刺激做出反应。这种现象使我们能够引入一种网络推断方法,该方法将整合来自扰动实验的蛋白质激活测量结果。该方法依赖基于逻辑的网络来提供网络中信号传递的预测近似值。该方法在一组测试网络中进行了计算机模拟验证,并应用于研究乳腺上皮细胞系 MCF10A 中的表皮生长因子受体信号转导。在我们的分析中,我们预测了最有可能负责丝裂原活化蛋白激酶和磷酸肌醇 3 激酶途径中几种蛋白质的实验读数的潜在信号通路。该方法还可用于识别其他必要的扰动实验,以区分一组可能的候选网络。

相似文献

引用本文的文献

1
Network inference from perturbation time course data.从扰动时间过程数据中进行网络推断。
NPJ Syst Biol Appl. 2022 Nov 1;8(1):42. doi: 10.1038/s41540-022-00253-6.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验