Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
PLoS One. 2013 Jul 30;8(7):e69220. doi: 10.1371/journal.pone.0069220. Print 2013.
Perturbation experiments for example using RNA interference (RNAi) offer an attractive way to elucidate gene function in a high throughput fashion. The placement of hit genes in their functional context and the inference of underlying networks from such data, however, are challenging tasks. One of the problems in network inference is the exponential number of possible network topologies for a given number of genes. Here, we introduce a novel mathematical approach to address this question. We formulate network inference as a linear optimization problem, which can be solved efficiently even for large-scale systems. We use simulated data to evaluate our approach, and show improved performance in particular on larger networks over state-of-the art methods. We achieve increased sensitivity and specificity, as well as a significant reduction in computing time. Furthermore, we show superior performance on noisy data. We then apply our approach to study the intracellular signaling of human primary nave CD4(+) T-cells, as well as ErbB signaling in trastuzumab resistant breast cancer cells. In both cases, our approach recovers known interactions and points to additional relevant processes. In ErbB signaling, our results predict an important role of negative and positive feedback in controlling the cell cycle progression.
扰动实验,例如使用 RNA 干扰 (RNAi),提供了一种高通量阐明基因功能的有吸引力的方法。然而,将命中基因置于其功能背景中,并从这些数据中推断潜在的网络,是具有挑战性的任务。网络推断中的一个问题是,对于给定数量的基因,存在指数数量的可能网络拓扑结构。在这里,我们引入了一种新的数学方法来解决这个问题。我们将网络推断表述为一个线性优化问题,即使对于大规模系统,也可以有效地解决。我们使用模拟数据来评估我们的方法,并在较大的网络上显示出优于最先进方法的性能。我们提高了灵敏度和特异性,并大大减少了计算时间。此外,我们在噪声数据上表现出优越的性能。然后,我们应用我们的方法来研究人原代 naive CD4(+) T 细胞的细胞内信号转导,以及曲妥珠单抗耐药乳腺癌细胞中的 ErbB 信号转导。在这两种情况下,我们的方法都恢复了已知的相互作用,并指出了其他相关的过程。在 ErbB 信号转导中,我们的结果预测了负反馈和正反馈在控制细胞周期进展中的重要作用。