Bewick Adam J, Niederhuth Chad E, Ji Lexiang, Rohr Nicholas A, Griffin Patrick T, Leebens-Mack Jim, Schmitz Robert J
Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
Genome Biol. 2017 May 1;18(1):65. doi: 10.1186/s13059-017-1195-1.
The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins.
CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns.
The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.
基因体甲基化(gbM)的进化、起源及其功能后果目前仍知之甚少。通过对绿藻门中最大的转录组(>1000个)和甲基化组(77个)数据集进行配对分析,我们对gbM的进化及其与甲基转移酶(CMT)蛋白的关系有了新的认识。
CMT是绿藻门中进化保守的DNA甲基转移酶。基因复制事件产生了现在被称为CMT1、CMT2和CMT3的蛋白质。在双子叶植物中CMT1、CMT2和CMT3独立缺失,在单子叶植物和单子叶/鸭跖草类植物中CMT2和ZMET缺失,拷贝数变异以及非中性进化表明该基因家族的功能进化存在重叠或变化。基因内的DNA甲基化广泛存在于所研究的绿藻门所有主要分类群中。在与被子植物亲缘关系较近的物种中也鉴定出了富含甲基化CG(mCG)的基因。与gbM相关的基因比例和DNA甲基化模式仅限于具有功能性CMT3或直系同源物的被子植物。然而,裸子植物火炬松中富含mCG的基因与无油樟中gbM基因有一些相似之处。此外,裸子植物和蕨类植物共享一个与CMT2和CMT3密切相关的CMT同源物。因此,gbM对CMT的依赖性很可能延伸到所有被子植物,甚至可能包括裸子植物和蕨类植物。
来自迄今为止最多样化植物样本的CMT转录本的基因家族系统发育重新定义了我们对CMT进化及其对DNA甲基化进化后果的理解。未来,对同源和旁系同源CMT的功能测试将揭示对表观基因组的新作用和后果。