Hu Jimmy Kuang-Hsien, Du Wei, Shelton Samuel J, Oldham Michael C, DiPersio C Michael, Klein Ophir D
Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
Cell Stem Cell. 2017 Jul 6;21(1):91-106.e6. doi: 10.1016/j.stem.2017.03.023. Epub 2017 Apr 27.
Tissue homeostasis requires the production of newly differentiated cells from resident adult stem cells. Central to this process is the expansion of undifferentiated intermediates known as transit-amplifying (TA) cells, but how stem cells are triggered to enter this proliferative TA state remains an important open question. Using the continuously growing mouse incisor as a model of stem cell-based tissue renewal, we found that the transcriptional cofactors YAP and TAZ are required both to maintain TA cell proliferation and to inhibit differentiation. Specifically, we identified a pathway involving activation of integrin α3 in TA cells that signals through an LATS-independent FAK/CDC42/PP1A cascade to control YAP-S397 phosphorylation and nuclear localization. This leads to Rheb expression and potentiates mTOR signaling to drive the proliferation of TA cells. These findings thus reveal a YAP/TAZ signaling mechanism that coordinates stem cell expansion and differentiation during organ renewal.
组织稳态需要成体驻留干细胞产生新分化的细胞。这一过程的核心是未分化中间体(即过渡扩增细胞,TA细胞)的扩增,但干细胞如何被触发进入这种增殖性TA状态仍是一个重要的悬而未决的问题。利用持续生长的小鼠切牙作为基于干细胞的组织更新模型,我们发现转录辅因子YAP和TAZ对于维持TA细胞增殖和抑制分化都是必需的。具体而言,我们鉴定出一条涉及TA细胞中整合素α3激活的信号通路,该通路通过一条不依赖LATS的FAK/CDC42/PP1A级联进行信号传导,以控制YAP-S397的磷酸化和核定位。这导致Rheb表达并增强mTOR信号传导,从而驱动TA细胞的增殖。因此,这些发现揭示了一种YAP/TAZ信号传导机制,该机制在器官更新过程中协调干细胞的扩增和分化。