Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands; Biobased Chemistry & Technology, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
Water Res. 2017 Aug 1;119:178-186. doi: 10.1016/j.watres.2017.04.039. Epub 2017 Apr 19.
In electrochemical water desalination, a large difference in pH can develop between feed and effluent water. These pH changes can affect the long-term stability of membranes and electrodes. Often Faradaic reactions are implicated to explain these pH changes. However, quantitative theory has not been developed yet to underpin these considerations. We develop a theory for electrochemical water desalination which includes not only Faradaic reactions but also the fact that all ions in the water have different mobilities (diffusion coefficients). We quantify the latter effect by microscopic physics-based modeling of pH changes in Membrane Capacitive Deionization (MCDI), a water desalination technology employing porous carbon electrodes and ion-exchange membranes. We derive a dynamic model and include the following phenomena: I) different mobilities of various ions, combined with acid-base equilibrium reactions; II) chemical surface charge groups in the micropores of the porous carbon electrodes, where electrical double layers are formed; and III) Faradaic reactions in the micropores. The theory predicts small pH changes during desalination cycles in MCDI if we only consider phenomena I) and II), but predicts that these pH changes can be much stronger if we consider phenomenon III) as well, which is in line with earlier statements in the literature on the relevance of Faradaic reactions to explain pH fluctuations.
在电化学水淡化中,进料水和出水之间会产生很大的 pH 差异。这些 pH 变化会影响膜和电极的长期稳定性。通常涉及法拉第反应来解释这些 pH 变化。然而,尚未开发出定量理论来支持这些考虑因素。我们开发了一种电化学水淡化理论,该理论不仅包括法拉第反应,还包括水中所有离子具有不同迁移率(扩散系数)的事实。我们通过基于微观物理的建模来量化后者的影响,该模型针对膜电容去离子(MCDI)中的 pH 变化,MCDI 是一种采用多孔碳电极和离子交换膜的水淡化技术。我们推导出一个动态模型,并包括以下现象:I)各种离子的不同迁移率,结合酸碱平衡反应;II)多孔碳电极的微孔中的化学表面电荷基团,在那里形成双电层;以及 III)微孔中的法拉第反应。如果我们只考虑现象 I) 和 II),该理论预测在 MCDI 的脱盐循环中 pH 变化很小,但如果我们也考虑现象 III),则预测这些 pH 变化可能会更强,这与文献中关于法拉第反应解释 pH 波动的相关性的早期陈述一致。