Oyarzun Diego I, Hemmatifar Ali, Palko James W, Stadermann Michael, Santiago Juan G
Department of Mechanical Engineering, Stanford University Stanford, CA 94305, USA.
Department of Mechanical Engineering, University of California, Merced, CA 95343, USA.
Water Res X. 2018 Nov 5;1:100008. doi: 10.1016/j.wroa.2018.100008. eCollection 2018 Dec 1.
Capacitive deionization (CDI) is a promising technique for salt removal and may have potential for highly selective removal of ion species. In this work, we take advantage of functional groups usually used with ionic exchange resins and apply these to CDI. To this end, we functionalize activated carbon with a quaternary amines surfactant and use this surface to selectively and passively (no applied field) trap nitrate ions. We then set the cell voltage to a constant value to regenerate these electrodes, resulting in an inverted capacitive deionization (i-CDI) operation. Unlike resins, we avoid use of concentrated chemicals for regeneration. We measure the selectivity of nitrate versus chloride ions as a function of regeneration voltage and initial chloride concentration. We experimentally demonstrate up to about 6.5-fold (observable) selectivity in a cycle with a regeneration voltage of 0.4 V. We also demonstrate a novel multi-pass, air-flush i-CDI operation to selectively enrich nitrate with high water recovery. We further present a dynamic, multi-species electrosorption and equilibrium solution-to-surface chemical reaction model and validate the model with detailed measurements. Our i-CDI system exhibits higher nitrate selectivity at lower voltages; making it possible to reduce NaNO concentrations from ∼170 ppm to below the limit of maximum allowed values for nitrate in drinking water of about 50 ppm NaNO.
电容去离子化(CDI)是一种很有前景的脱盐技术,可能具有高选择性去除离子种类的潜力。在这项工作中,我们利用通常与离子交换树脂一起使用的官能团,并将其应用于CDI。为此,我们用季胺表面活性剂对活性炭进行功能化处理,并利用该表面选择性地、被动地(无外加电场)捕获硝酸根离子。然后,我们将电池电压设置为恒定值以再生这些电极,从而实现反向电容去离子化(i-CDI)操作。与树脂不同,我们避免使用浓化学物质进行再生。我们测量了硝酸根与氯离子的选择性作为再生电压和初始氯离子浓度的函数。我们通过实验证明,在再生电压为0.4 V的循环中,选择性高达约6.5倍(可观察到)。我们还展示了一种新颖的多程、空气冲洗i-CDI操作,以高水回收率选择性富集硝酸根。我们进一步提出了一个动态、多物种电吸附和平衡溶液-表面化学反应模型,并用详细的测量结果验证了该模型。我们的i-CDI系统在较低电压下表现出更高的硝酸根选择性;使得将NaNO浓度从约170 ppm降低到饮用水中硝酸根最大允许值约50 ppm NaNO以下成为可能。