Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
Water Res. 2017 Oct 1;122:387-397. doi: 10.1016/j.watres.2017.05.036. Epub 2017 May 20.
Ion adsorption and equilibrium between electrolyte and microstructure of porous electrodes are at the heart of capacitive deionization (CDI) research. Surface functional groups are among the factors which fundamentally affect adsorption characteristics of the material and hence CDI system performance in general. Current CDI-based models for surface charge are mainly based on a fixed (constant) charge density, and do not treat acid-base equilibria of electrode microstructure including so-called micropores. We here expand current models by coupling the modified Donnan (mD) model with weak electrolyte acid-base equilibria theory. In our model, surface charge density can vary based on equilibrium constants (pK's) of individual surface groups as well as micropore and electrolyte pH environments. In this initial paper, we consider this equilibrium in the absence of Faradaic reactions. The model shows the preferential adsorption of cations versus anions to surfaces with respectively acidic or basic surface functional groups. We introduce a new parameter we term "chemical charge efficiency" to quantify efficiency of salt removal due to surface functional groups. We validate our model using well controlled titration experiments for an activated carbon cloth (ACC), and quantify initial and final pH of solution after adding the ACC sample. We also leverage inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) to quantify the final background concentrations of individual ionic species. Our results show a very good agreement between experiments and model. The model is extendable to a wide variety of porous electrode systems and CDI systems with applied potential.
离子吸附和电解质与多孔电极微结构之间的平衡是电容去离子(CDI)研究的核心。表面官能团是从根本上影响材料吸附特性以及一般 CDI 系统性能的因素之一。目前基于 CDI 的表面电荷模型主要基于固定(恒定)电荷密度,并且不处理包括所谓微孔在内的电极微结构的酸碱平衡。我们在这里通过将修正的 Donnan(mD)模型与弱电解质酸碱平衡理论相结合来扩展当前的模型。在我们的模型中,表面电荷密度可以根据单个表面基团以及微孔和电解质 pH 环境的平衡常数(pK)而变化。在本初始论文中,我们考虑在没有 Faradaic 反应的情况下这种平衡。该模型表明阳离子相对于阴离子优先吸附到具有酸性或碱性表面官能团的表面。我们引入了一个新参数,我们称之为“化学电荷效率”,用于量化由于表面官能团而去除盐的效率。我们使用针对活性碳纤维布(ACC)的受控滴定实验来验证我们的模型,并量化添加 ACC 样品后溶液的初始和最终 pH 值。我们还利用电感耦合等离子体质谱(ICP-MS)和离子色谱(IC)来量化各个离子物种的最终背景浓度。我们的结果表明实验和模型之间具有非常好的一致性。该模型可扩展到具有应用电势的各种多孔电极系统和 CDI 系统。