Vinokurov Vladimir A, Stavitskaya Anna V, Chudakov Yaroslav A, Ivanov Evgenii V, Shrestha Lok Kumar, Ariga Katsuhiko, Darrat Yusuf A, Lvov Yuri M
Department of Physical and Colloid Chemistry, I. Gubkin Russian State University of Oil and Gas, Moscow, Russia.
WPI-MANA, National Institute for Materials Science, Tsukuba, Japan.
Sci Technol Adv Mater. 2017 Feb 16;18(1):147-151. doi: 10.1080/14686996.2016.1278352. eCollection 2017.
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of .50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.
我们基于丰富的埃洛石粘土纳米管开发了陶瓷核壳材料,通过席夫碱结合增强了重金属离子负载量。这些粘土管由铝硅酸盐片层卷曲而成,直径为0.50纳米,内腔为15纳米,长度约为1微米。这使得能够在选定位置合成金属纳米颗粒:(1)在管的外表面上播种3-5纳米的金属颗粒;(2)在管的中心内腔内,形成直径为10-12纳米的金属核,外包陶瓷壁;(3)较小的金属纳米颗粒插层在管壁中,允许负载高达9重量%的钌和银。这些复合材料具有高表面积,为催化纳米颗粒提供了良好的支撑,还可用于从水溶液中吸附金属离子。