Ruiz-Hitzky Eduardo, Aranda Pilar, Akkari Marwa, Khaorapapong Nithima, Ogawa Makoto
Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28027 Madrid, Spain.
Laboratory of Nanomaterials and Renewable Energy Systems. Research and Technology Center of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif, Tunisia.
Beilstein J Nanotechnol. 2019 May 31;10:1140-1156. doi: 10.3762/bjnano.10.114. eCollection 2019.
Thought as raw materials clay minerals are often disregarded in the development of advanced materials. However, clays of natural and synthetic origin constitute excellent platforms for developing nanostructured functional materials for numerous applications. They can be easily assembled to diverse types of nanoparticles provided with magnetic, electronic, photoactive or bioactive properties, allowing to overcome drawbacks of other types of substrates in the design of functional nanoarchitectures. Within this scope, clays can be of special relevance in the production of photoactive materials as they offer an advantageous way for the stabilization and immobilization of diverse metal-oxide nanoparticles. The controlled assembly under mild conditions of titanium dioxide and zinc oxide nanoparticles with clay minerals to give diverse clay-semiconductor nanoarchitectures are summarized and critically discussed in this review article. The possibility to use clay minerals as starting components showing different morphologies, such as layered, fibrous, or tubular morphologies, to immobilize these types of nanoparticles mainly plays a role in i) the control of their size and size distribution on the solid surface, ii) the mitigation or suppression of the nanoparticle aggregation, and iii) the hierarchical design for selectivity enhancements in the catalytic transformation and for improved overall reaction efficiency. This article tries also to present new steps towards more sophisticated but efficient and highly selective functional nanoarchitectures incorporating photosensitizer elements for tuning the semiconductor-clay photoactivity.
作为原材料,粘土矿物在先进材料的开发中常常被忽视。然而,天然和合成来源的粘土构成了开发用于众多应用的纳米结构功能材料的优良平台。它们可以很容易地组装成具有磁性、电子、光活性或生物活性的各种类型的纳米颗粒,从而在功能纳米结构的设计中克服其他类型基底的缺点。在此范围内,粘土在光活性材料的生产中可能具有特殊意义,因为它们为各种金属氧化物纳米颗粒的稳定化和固定化提供了一种有利的方式。本文综述并批判性地讨论了在温和条件下将二氧化钛和氧化锌纳米颗粒与粘土矿物进行可控组装以得到各种粘土 - 半导体纳米结构的情况。使用具有不同形态(如层状、纤维状或管状形态)的粘土矿物作为起始组分来固定这些类型的纳米颗粒,主要在以下方面发挥作用:i)控制它们在固体表面的尺寸和尺寸分布,ii)减轻或抑制纳米颗粒的聚集,以及iii)进行分级设计以提高催化转化中的选择性并提高整体反应效率。本文还尝试展示朝着更复杂但高效且高选择性的功能纳米结构迈出的新步伐,这些结构包含用于调节半导体 - 粘土光活性的光敏剂元素。