Suppr超能文献

基于 128 通道 FPGA 的实时 Spike 排序双向闭环神经接口系统。

A 128-Channel FPGA-Based Real-Time Spike-Sorting Bidirectional Closed-Loop Neural Interface System.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Dec;25(12):2227-2238. doi: 10.1109/TNSRE.2017.2697415. Epub 2017 Apr 24.

Abstract

A multichannel neural interface system is an important tool for various types of neuroscientific studies. For the electrical interface with a biological system, high-precision high-speed data recording and various types of stimulation capability are required. In addition, real-time signal processing is an important feature in the implementation of a real-time closed-loop system without unwanted substantial delay for feedback stimulation. Online spike sorting, the process of assigning neural spikes to an identified group of neurons or clusters, is a necessary step to make a closed-loop path in real time, but massive memory-space requirements commonly limit hardware implementations. Here, we present a 128-channel field-programmable gate array (FPGA)-based real-time closed-loop bidirectional neural interface system. The system supports 128 channels for simultaneous signal recording and eight selectable channels for stimulation. A modular 64-channel analog front-end (AFE) provides scalability and a parameterized specification of the AFE supports the recording of various electrophysiological signal types with 1.59 ± 0.76 root-mean-square noise. The stimulator supports both voltage-controlled and current-controlled arbitrarily shaped waveforms with the programmable amplitude and duration of pulse. An empirical algorithm for online real-time spike sorting is implemented in an FPGA. The spike-sorting is performed by template matching, and templates are created by an online real-time unsupervised learning process. A memory saving technique, called dynamic cache organizing, is proposed to reduce the memory requirement down to 6 kbit per channel and modular implementation improves the scalability for further extensions.

摘要

多通道神经接口系统是各种类型的神经科学研究的重要工具。对于与生物系统的电接口,需要高精度、高速的数据记录和各种类型的刺激能力。此外,实时信号处理是实现实时闭环系统的一个重要特征,因为反馈刺激不能有不必要的实质性延迟。在线尖峰分类,即将神经尖峰分配给已识别的神经元或簇的过程,是实时实现闭环路径的必要步骤,但大量的内存空间要求通常限制了硬件实现。在这里,我们提出了一种基于 128 通道现场可编程门阵列(FPGA)的实时闭环双向神经接口系统。该系统支持同时进行 128 个通道的信号记录和 8 个可选通道的刺激。一个模块化的 64 通道模拟前端(AFE)提供了可扩展性,并且 AFE 的参数化规范支持记录各种电生理信号类型,其均方根噪声为 1.59 ± 0.76。刺激器支持电压控制和电流控制的任意形状波形,具有可编程的脉冲幅度和持续时间。一种用于在线实时尖峰分类的经验算法在 FPGA 中实现。通过模板匹配进行尖峰分类,并且通过在线实时无监督学习过程创建模板。提出了一种称为动态缓存组织的节省内存技术,可将每个通道的内存需求减少到 6 kbit,并采用模块化实现提高了可扩展性,以进行进一步扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验