Suppr超能文献

SMN2基因第6内含子中的A-44G转换对脊髓性肌萎缩症患者具有保护作用。

A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy.

作者信息

Wu Xingxing, Wang Shu-Huei, Sun Junjie, Krainer Adrian R, Hua Yimin, Prior Thomas W

机构信息

Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.

Department of Pathology, Ohio State University, Columbus, OH 43210, USA.

出版信息

Hum Mol Genet. 2017 Jul 15;26(14):2768-2780. doi: 10.1093/hmg/ddx166.

Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by reduced expression of survival of motor neuron (SMN), a protein expressed in humans by two paralogous genes, SMN1 and SMN2. These genes are nearly identical, except for 10 single-nucleotide differences and a 5-nucleotide insertion in SMN2. SMA is subdivided into four main types, with type I being the most severe. SMN2 copy number is a key positive modifier of the disease, but it is not always inversely correlated with clinical severity. We previously reported the c.859G > C variant in SMN2 exon 7 as a positive modifier in several patients. We have now identified A-44G as an additional positive disease modifier, present in a group of patients carrying 3 SMN2 copies but displaying milder clinical phenotypes than other patients with the same SMN2 copy number. One of the three SMN2 copies appears to have been converted from SMN1, but except for the C6T transition, no other changes were detected. Analyzed with minigenes, SMN1C6T displayed a ∼20% increase in exon 7 inclusion, compared to SMN2. Through systematic mutagenesis, we found that the improvement in exon 7 splicing is mainly attributable to the A-44G transition in intron 6. Using RNA-affinity chromatography and mass spectrometry, we further uncovered binding of the RNA-binding protein HuR to the -44 region, where it acts as a splicing repressor. The A-44G change markedly decreases the binding affinity of HuR, resulting in a moderate increase in exon 7 inclusion.

摘要

脊髓性肌萎缩症(SMA)是一种神经肌肉疾病,由运动神经元存活蛋白(SMN)表达减少引起,该蛋白在人类中由两个同源基因SMN1和SMN2表达。除了10个单核苷酸差异和SMN2中的一个5核苷酸插入外,这些基因几乎相同。SMA分为四种主要类型,其中I型最为严重。SMN2拷贝数是该疾病的关键正向修饰因子,但它并不总是与临床严重程度呈负相关。我们之前报道过SMN2外显子7中的c.859G>C变异是几名患者的正向修饰因子。我们现在已确定A-44G是另一个正向疾病修饰因子,存在于一组携带3个SMN2拷贝但临床表型比其他具有相同SMN2拷贝数的患者更轻的患者中。三个SMN2拷贝之一似乎已从SMN1转换而来,但除了C6T转换外,未检测到其他变化。用小基因分析时,与SMN2相比,SMN1C6T在外显子7包含率上显示出约20%的增加。通过系统诱变,我们发现外显子7剪接的改善主要归因于内含子6中的A-44G转换。使用RNA亲和色谱法和质谱法,我们进一步发现RNA结合蛋白HuR与-44区域结合,在该区域它作为剪接抑制因子起作用。A-44G变化显著降低了HuR的结合亲和力,导致外显子7包含率适度增加。

相似文献

1
A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy.
Hum Mol Genet. 2017 Jul 15;26(14):2768-2780. doi: 10.1093/hmg/ddx166.
2
Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene.
PLoS One. 2016 Apr 25;11(4):e0154390. doi: 10.1371/journal.pone.0154390. eCollection 2016.
3
Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model.
RNA Biol. 2011 Jul-Aug;8(4):600-6. doi: 10.4161/rna.8.4.16224. Epub 2011 Jul 1.
5
hnRNP M facilitates exon 7 inclusion of SMN2 pre-mRNA in spinal muscular atrophy by targeting an enhancer on exon 7.
Biochim Biophys Acta. 2014;1839(4):306-15. doi: 10.1016/j.bbagrm.2014.02.006. Epub 2014 Feb 15.
7
Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes.
Adv Neurobiol. 2018;20:31-61. doi: 10.1007/978-3-319-89689-2_2.
8
A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy.
Nat Genet. 2003 Aug;34(4):460-3. doi: 10.1038/ng1207.
9
Splicing of the Survival Motor Neuron genes and implications for treatment of SMA.
Front Biosci (Landmark Ed). 2010 Jun 1;15(3):1191-1204. doi: 10.2741/3670.
10
Clinical phenotypes of spinal muscular atrophy patients with hybrid SMN gene.
Brain Dev. 2021 Feb;43(2):294-302. doi: 10.1016/j.braindev.2020.09.005. Epub 2020 Oct 6.

引用本文的文献

1
Single Nucleotide Variants in a Cohort of Individuals With Spinal Muscular Atrophy.
Neurol Genet. 2025 Aug 27;11(5):e200286. doi: 10.1212/NXG.0000000000200286. eCollection 2025 Oct.
2
Epigenetic regulation in spinal muscular atrophy: emerging areas and future directions.
Orphanet J Rare Dis. 2025 Jul 10;20(1):353. doi: 10.1186/s13023-025-03857-3.
3
Comprehensive analysis across excludes DNA methylation as an epigenetic biomarker for spinal muscular atrophy.
iScience. 2025 Apr 17;28(5):112461. doi: 10.1016/j.isci.2025.112461. eCollection 2025 May 16.
4
Frataxin: from the sequence to the biological role.
Biophys Rev. 2025 Apr 3;17(2):449-465. doi: 10.1007/s12551-025-01311-z. eCollection 2025 Apr.
5
Whole-transcriptome sequencing in neural and non-neural tissues of a mouse model identifies miR-34a as a key regulator in SMA pathogenesis.
Mol Ther Nucleic Acids. 2025 Feb 20;36(2):102490. doi: 10.1016/j.omtn.2025.102490. eCollection 2025 Jun 10.
7
[Research progress on phenotypic modifier genes in spinal muscular atrophy].
Zhongguo Dang Dai Er Ke Za Zhi. 2025 Feb 15;27(2):229-235. doi: 10.7499/j.issn.1008-8830.2410064.
8
Outcomes of a Pilot Newborn Screening Program for Spinal Muscular Atrophy in the Valencian Community.
Int J Neonatal Screen. 2025 Jan 14;11(1):7. doi: 10.3390/ijns11010007.
9
Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.
Orphanet J Rare Dis. 2025 Jan 15;20(1):25. doi: 10.1186/s13023-024-03523-0.
10
In Search of Spinal Muscular Atrophy Disease Modifiers.
Int J Mol Sci. 2024 Oct 18;25(20):11210. doi: 10.3390/ijms252011210.

本文引用的文献

1
Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis.
Am J Hum Genet. 2017 Feb 2;100(2):297-315. doi: 10.1016/j.ajhg.2017.01.005. Epub 2017 Jan 26.
2
3
Commonality amid diversity: Multi-study proteomic identification of conserved disease mechanisms in spinal muscular atrophy.
Neuromuscul Disord. 2016 Sep;26(9):560-9. doi: 10.1016/j.nmd.2016.06.004. Epub 2016 Jun 7.
4
Quantitative proteomics identifies myoferlin as a novel regulator of A Disintegrin and Metalloproteinase 12 in HeLa cells.
J Proteomics. 2016 Oct 4;148:94-104. doi: 10.1016/j.jprot.2016.07.015. Epub 2016 Jul 16.
5
SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy.
J Cell Biol. 2015 Oct 12;211(1):77-90. doi: 10.1083/jcb.201502059. Epub 2015 Oct 5.
6
Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ∆7 SMA Mouse.
PLoS One. 2015 Jul 2;10(7):e0132364. doi: 10.1371/journal.pone.0132364. eCollection 2015.
7
Targeting SR proteins improves SMN expression in spinal muscular atrophy cells.
PLoS One. 2014 Dec 15;9(12):e115205. doi: 10.1371/journal.pone.0115205. eCollection 2014.
9
Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy.
J Clin Invest. 2014 Apr;124(4):1821-34. doi: 10.1172/JCI71318. Epub 2014 Mar 3.
10
Regulation of telomerase alternative splicing: a target for chemotherapy.
Cell Rep. 2013 Apr 25;3(4):1028-35. doi: 10.1016/j.celrep.2013.03.011. Epub 2013 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验