Nevers Yannis, Prasad Megana K, Poidevin Laetitia, Chennen Kirsley, Allot Alexis, Kress Arnaud, Ripp Raymond, Thompson Julie D, Dollfus Hélène, Poch Olivier, Lecompte Odile
Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France.
Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, INSERM U1112, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
Mol Biol Evol. 2017 Aug 1;34(8):2016-2034. doi: 10.1093/molbev/msx146.
Cilia (flagella) are important eukaryotic organelles, present in the Last Eukaryotic Common Ancestor, and are involved in cell motility and integration of extracellular signals. Ciliary dysfunction causes a class of genetic diseases, known as ciliopathies, however current knowledge of the underlying mechanisms is still limited and a better characterization of genes is needed. As cilia have been lost independently several times during evolution and they are subject to important functional variation between species, ciliary genes can be investigated through comparative genomics. We performed phylogenetic profiling by predicting orthologs of human protein-coding genes in 100 eukaryotic species. The analysis integrated three independent methods to predict a consensus set of 274 ciliary genes, including 87 new promising candidates. A fine-grained analysis of the phylogenetic profiles allowed a partitioning of ciliary genes into modules with distinct evolutionary histories and ciliary functions (assembly, movement, centriole, etc.) and thus propagation of potential annotations to previously undocumented genes. The cilia/basal body localization was experimentally confirmed for five of these previously unannotated proteins (LRRC23, LRRC34, TEX9, WDR27, and BIVM), validating the relevance of our approach. Furthermore, our multi-level analysis sheds light on the core gene sets retained in gamete-only flagellates or Ecdysozoa for instance. By combining gene-centric and species-oriented analyses, this work reveals new ciliary and ciliopathy gene candidates and provides clues about the evolution of ciliary processes in the eukaryotic domain. Additionally, the positive and negative reference gene sets and the phylogenetic profile of human genes constructed during this study can be exploited in future work.
纤毛(鞭毛)是重要的真核细胞器,存在于最后的真核生物共同祖先中,参与细胞运动和细胞外信号整合。纤毛功能障碍会导致一类遗传性疾病,即纤毛病,然而目前对其潜在机制的了解仍然有限,需要更好地鉴定相关基因。由于纤毛在进化过程中多次独立丢失,且在不同物种间存在重要的功能差异,因此可通过比较基因组学来研究纤毛基因。我们通过预测100种真核生物中人类蛋白质编码基因的直系同源基因进行了系统发育谱分析。该分析整合了三种独立方法,以预测出一组包含274个纤毛基因的共识集,其中包括87个新的有潜力的候选基因。对系统发育谱的精细分析使我们能够将纤毛基因划分为具有不同进化历史和纤毛功能(组装、运动、中心粒等)的模块,从而将潜在注释扩展到以前未记录的基因。实验证实了其中5种以前未注释的蛋白质(LRRC23、LRRC34、TEX9、WDR27和BIVM)定位于纤毛/基体,验证了我们方法的相关性。此外,我们的多层次分析揭示了仅存在于配子鞭毛虫或蜕皮动物中的核心基因集。通过结合以基因为中心和以物种为导向的分析,这项工作揭示了新的纤毛和纤毛病候选基因,并为真核域中纤毛过程的进化提供了线索。此外,本研究构建的人类基因的正负参考基因集和系统发育谱可在未来工作中加以利用。