Departamento de Química Física and Biomedical Research Center (CINBIO), Universidade de Vigo , 36310 Vigo, Spain.
Bionanoplasmonics Laboratory, CIC biomaGUNE , Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain.
ACS Nano. 2017 May 23;11(5):4631-4640. doi: 10.1021/acsnano.7b00258. Epub 2017 May 5.
Microbes produce bioactive chemical compounds to influence the physiology and growth of their neighbors, and our understanding of their biological activities may be enhanced by our ability to visualize such molecules in vivo. We demonstrate here the application of surface-enhanced Raman scattering spectroscopy for simultaneous detection of quorum-sensing-regulated pyocyanin and violacein, produced respectively by Pseudomonas aeruginosa and Chromobacterium violaceum bacterial colonies, grown as a coculture on agar-based plasmonic substrates. Our plasmonic approach allowed us to visualize the expression and spatial distribution of the microbial metabolites in the coculture taking place as a result of interspecies chemical interactions. By combining surface-enhanced Raman scattering spectroscopy with analysis of gene expression we provide insight into the chemical interplay occurring between the interacting bacterial species. This highly sensitive, cost-effective, and easy to implement approach allows spatiotemporal imaging of cellular metabolites in live microbial colonies grown on agar with no need for sample preparation, thereby providing a powerful tool for the analysis of microbial chemotypes.
微生物产生生物活性化学化合物来影响其邻居的生理和生长,而我们能够在体内可视化这些分子,这可能会增强我们对它们生物活性的理解。我们在这里展示了表面增强拉曼散射光谱在琼脂基等离子体底物上共培养的细菌菌落中,分别由铜绿假单胞菌和紫色色杆菌产生的群体感应调节的绿脓菌素和紫色素的同时检测中的应用。我们的等离子体方法使我们能够可视化由于种间化学相互作用而发生的共培养中微生物代谢物的表达和空间分布。通过将表面增强拉曼散射光谱与基因表达分析相结合,我们深入了解了相互作用的细菌物种之间发生的化学相互作用。这种高灵敏度、具有成本效益且易于实施的方法允许在琼脂上生长的活体微生物菌落中对细胞代谢物进行时空成像,而无需进行样品制备,从而为分析微生物化学型提供了有力工具。