GSK Vaccines , Via Fiorentina 1, 53100 Siena, Italy.
Acc Chem Res. 2017 May 16;50(5):1270-1279. doi: 10.1021/acs.accounts.7b00106. Epub 2017 May 2.
Since 2004, when the first synthetic glycoconjugate vaccine against the pneumonia and meningitis causing bacterium Haemophilus influenza type b (Hib) approved for human use in Cuba was reported, 34 million doses of the synthetic vaccine have been already distributed in several countries under the commercial name of Quimi-Hib. However, despite the success of this product, no other synthetic glycoconjugate vaccine has been licensed in the following 13 years. As well as avoiding the need to handle pathogens, synthetic glycoconjugates offer clear advantages in terms of product characterization and the possibility to understand the parameters influencing immunogenicity. Nevertheless, large scale application of synthetic sugars has been perceived as challenging because of manufacturing costs and process complexity compared to natural polysaccharides. Chemoenzymatic approaches, one-pot protocols, and automated solid-phase synthesis are rendering carbohydrate production considerably more attractive for industrialization. Here we identify three areas where chemical approaches can advance this progress: (i) chemical or enzymatic methods enabling the delivery of the minimal polysaccharide portion responsible for an effective immune response; (ii) site-selective chemical or enzymatic conjugation strategies for the exploration of the conjugation point in immune responses against carbohydrate-based vaccines, and the consistent preparation of more homogeneous products; (iii) multicomponent constructs targeting receptors responsible for immune response modulation in order to control its quality and magnitude. We discuss how synthesis of bacterial oligosaccharides is useful toward understanding the polysaccharide portion responsible for immunogenicity, and for developing robust and consistent alternatives to natural heterogeneous polysaccharides. The synthesis of sugar analogues can lead to the identification of hydrolytically more stable versions of oligosaccharide antigens. The study of bacterial polysaccharide biosynthesis aids the development of in vitro hazard-free oligosaccharide production. Novel site-selective conjugation methods contribute toward deciphering the role of conjugation sites in the immunogenicity of glycoconjugates and prove to be particularly useful when glycans are conjugated to protein serving as carrier and antigen. The orthogonal incorporation of two different carbohydrate haptens enables the reduction of vaccine components. Finally, coordinated conjugation of glycans and small molecule immunopotentiators supports simplification of vaccine formulation and localization of adjuvant. Synergistic advancement of these areas, combined with competitive manufacturing processes, will contribute to a better understanding of the features guiding the immunological activity of glycoconjugates and, ultimately, to the design of improved, safer vaccines.
自 2004 年在古巴批准第一种用于预防肺炎和脑膜炎的流感嗜血杆菌(Hib)的合成糖缀合物疫苗用于人体使用以来,已经在几个国家以商品名 Quimi-Hib 分发了 3400 万剂这种合成疫苗。然而,尽管该产品取得了成功,但在接下来的 13 年中,没有其他合成糖缀合物疫苗获得许可。与天然多糖相比,合成糖缀合物不仅避免了处理病原体的需要,而且在产品特性和了解影响免疫原性的参数方面具有明显的优势。然而,与天然多糖相比,由于生产成本和工艺复杂性,大规模应用合成糖一直被认为是具有挑战性的。化学酶法途径、一锅法和自动化固相合成使碳水化合物的生产更具工业化吸引力。在这里,我们确定了化学方法可以推进这一进展的三个领域:(i)使负责有效免疫反应的最小多糖部分得以传递的化学或酶方法;(ii)用于探索针对基于碳水化合物的疫苗的免疫反应中的缀合点以及一致制备更均一产品的位点选择性化学或酶促缀合策略;(iii)针对负责调节免疫反应的受体的多组分构建体,以控制其质量和幅度。我们讨论了细菌低聚糖的合成如何有助于了解负责免疫原性的多糖部分,并开发出天然异质多糖的稳健且一致的替代品。糖类似物的合成可以导致鉴定抗原的低聚糖抗原的水解稳定性更高的版本。细菌多糖生物合成的研究有助于开发无危险的体外低聚糖生产。新型的位点选择性缀合方法有助于阐明缀合部位在糖缀合物免疫原性中的作用,并且当糖与作为载体和抗原的蛋白质缀合时特别有用。两种不同糖半抗原的正交掺入可减少疫苗成分。最后,糖和小分子免疫增强剂的协同缀合支持简化疫苗配方和佐剂定位。这些领域的协同进展,加上有竞争力的制造工艺,将有助于更好地了解指导糖缀合物免疫活性的特征,并最终设计出改进的、更安全的疫苗。