Suppr超能文献

无滞后碳纳米管场效应晶体管。

Hysteresis-Free Carbon Nanotube Field-Effect Transistors.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

出版信息

ACS Nano. 2017 May 23;11(5):4785-4791. doi: 10.1021/acsnano.7b01164. Epub 2017 May 4.

Abstract

While carbon nanotube (CNT) field-effect transistors (CNFETs) promise high-performance and energy-efficient digital systems, large hysteresis degrades these potential CNFET benefits. As hysteresis is caused by traps surrounding the CNTs, previous works have shown that clean interfaces that are free of traps are important to minimize hysteresis. Our previous findings on the sources and physics of hysteresis in CNFETs enabled us to understand the influence of gate dielectric scaling on hysteresis. To begin with, we validate through simulations how scaling the gate dielectric thickness results in greater-than-expected benefits in reducing hysteresis. Leveraging this insight, we experimentally demonstrate reducing hysteresis to <0.5% of the gate-source voltage sweep range using a very large-scale integration compatible and solid-state technology, simply by fabricating CNFETs with a thin effective oxide thickness of 1.6 nm. However, even with negligible hysteresis, large subthreshold swing is still observed in the CNFETs with multiple CNTs per transistor. We show that the cause of large subthreshold swing is due to threshold voltage variation between individual CNTs. We also show that the source of this threshold voltage variation is not explained solely by variations in CNT diameters (as is often ascribed). Rather, other factors unrelated to the CNTs themselves (i.e., process variations, random fixed charges at interfaces) are a significant factor in CNT threshold voltage variations and thus need to be further improved.

摘要

虽然碳纳米管(CNT)场效应晶体管(CNFET)有望实现高性能和高能效的数字系统,但大的滞后现象降低了这些潜在 CNFET 的优势。由于滞后是由 CNT 周围的陷阱引起的,之前的工作已经表明,没有陷阱的清洁界面对于最小化滞后现象非常重要。我们之前在 CNFET 中滞后现象的来源和物理特性方面的研究使我们能够理解栅介质缩放对滞后现象的影响。首先,我们通过模拟验证了栅介质厚度的缩放如何导致滞后现象的预期收益增加。利用这一见解,我们通过使用非常大规模集成兼容和固态技术,仅通过制造具有 1.6nm 有效氧化层厚度的 CNFET,就实验性地将滞后现象降低到小于栅源电压扫描范围的 0.5%。然而,即使滞后现象可以忽略不计,在每个晶体管具有多个 CNT 的 CNFET 中仍然观察到较大的亚阈值摆幅。我们表明,大的亚阈值摆幅的原因是由于单个 CNT 之间的阈值电压变化。我们还表明,这种阈值电压变化的原因不仅仅是 CNT 直径的变化(通常归因于此)。相反,与 CNT 本身无关的其他因素(即,工艺变化、界面处的随机固定电荷)是 CNT 阈值电压变化的一个重要因素,因此需要进一步改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验