Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States.
ACS Nano. 2014 Apr 22;8(4):3434-43. doi: 10.1021/nn406301r. Epub 2014 Apr 1.
Carbon nanotube (CNT) field-effect transistors (CNFETs) are a promising emerging technology projected to achieve over an order of magnitude improvement in energy-delay product, a metric of performance and energy efficiency, compared to silicon-based circuits. However, due to substantial imperfections inherent with CNTs, the promise of CNFETs has yet to be fully realized. Techniques to overcome these imperfections have yielded promising results, but thus far only at large technology nodes (1 μm device size). Here we demonstrate the first very large scale integration (VLSI)-compatible approach to realizing CNFET digital circuits at highly scaled technology nodes, with devices ranging from 90 nm to sub-20 nm channel lengths. We demonstrate inverters functioning at 1 MHz and a fully integrated CNFET infrared light sensor and interface circuit at 32 nm channel length. This demonstrates the feasibility of realizing more complex CNFET circuits at highly scaled technology nodes.
碳纳米管(CNT)场效应晶体管(CNFET)是一种很有前途的新兴技术,预计在性能和能效的衡量标准——能量延迟乘积方面,与硅基电路相比,其性能将提高一个数量级。然而,由于 CNT 存在大量固有的不完美,CNFET 的前景尚未完全实现。克服这些不完美的技术已经取得了有希望的结果,但到目前为止,这些技术仅在大型技术节点(1 μm 器件尺寸)上得到了应用。在这里,我们展示了第一个非常大规模集成(VLSI)兼容的方法,在高度缩放的技术节点上实现 CNFET 数字电路,器件的沟道长度从 90nm 到小于 20nm。我们展示了工作频率为 1MHz 的反相器和工作频率为 32nm 沟道长度的全集成 CNFET 红外光传感器和接口电路。这证明了在高度缩放的技术节点上实现更复杂的 CNFET 电路的可行性。