Suppr超能文献

Identifying dynamic pathway interactions based on clinical information.

作者信息

Kim Shinuk

机构信息

Department of Civil Engineering, Sangmyung University, Cheonan Chungnam 31066, Republic of Korea.

出版信息

Comput Biol Chem. 2017 Jun;68:260-265. doi: 10.1016/j.compbiolchem.2017.04.009. Epub 2017 Apr 24.

Abstract

In this paper, we introduce approaches for inferring dynamic pathway interactions by converting static datasets into dynamic datasets using patients' clinical information. One approach uses survival time-based dynamic datasets, and the other uses grade- and stage-based dynamic datasets. Based on cancer grades and stages, we generated six dynamic levels and obtained two pairs of significant pathways out of twelve enriched pathways. One pair of the pathways included CELL ADHESION MOLECULES CAMS and SYSTEMIC LUPUS ERYTHEMATOSUS (correlation coefficient=1.00), in which CD28, CD86, HLA-DOA, and HLA-DOB were identified as common genes in the pathways. The other pair of the pathways included SPLICEOSOME and PRIMARY IMMUNODEFICIENCY (correlation coefficient=0.94) with no common genes identified.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验