Suppr超能文献

水杨酸盐诱导的大鼠听觉过敏:剂量和频率依赖性效应。

Salicylate-induced hyperacusis in rats: Dose- and frequency-dependent effects.

作者信息

Radziwon Kelly, Holfoth David, Lindner Julia, Kaier-Green Zoe, Bowler Rachael, Urban Maxwell, Salvi Richard

机构信息

Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA.

Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA.

出版信息

Hear Res. 2017 Jul;350:133-138. doi: 10.1016/j.heares.2017.04.004. Epub 2017 Apr 27.

Abstract

The use of auditory reaction time is a reliable measure of loudness perception in both animals and humans with reaction times (RT) decreasing with increasing stimulus intensity. Since abnormal loudness perception is a common feature of hyperacusis, a potentially debilitating auditory disorder in which moderate-intensity sounds are perceived as uncomfortable or painfully loud, we used RT measures to assess rats for salicylate-induced hyperacusis. A previous study using an operant conditioning RT procedure found that high-dose sodium salicylate (SS) induced hyperacusis-like behavior, i.e., faster than normal RTs to moderate and high level sounds, when rats were tested with broadband noise stimuli. However, it was not clear from that study if salicylate induces hyperacusis-like behavior in a dose- or frequency-dependent manner. Therefore, the goals of the current study were to determine how RT-intensity functions were altered by different doses of salicylate, and, using tone bursts, to determine if salicylate induces hyperacusis-like behavior across the entire frequency spectrum or only at certain frequencies. Similar to previous physiological studies, we began to see faster than normal RTs for sounds 60 dB SPL and greater with salicylate doses of 150 mg/kg and higher; indicating the rats were experiencing hyperacusis at high salicylate doses. In addition, high-dose salicylate significantly reduced RTs across all stimulus frequencies tested which suggests that a central neural excitability mechanism may be a potential driver of salicylate-induced changes in loudness perception and hyperacusis.

摘要

听觉反应时间的使用是衡量动物和人类响度感知的可靠指标,反应时间(RT)会随着刺激强度的增加而缩短。由于响度感知异常是听觉过敏的一个常见特征,听觉过敏是一种潜在的使人衰弱的听觉障碍,在此病症中,中等强度的声音会被感知为不舒服或异常响亮,我们使用反应时间测量来评估大鼠水杨酸盐诱导的听觉过敏。之前一项使用操作性条件反射反应时间程序的研究发现,当用宽带噪声刺激测试大鼠时,高剂量水杨酸钠(SS)会诱发类似听觉过敏的行为,即对中等和高强度声音的反应时间比正常情况更快。然而,从该研究中尚不清楚水杨酸盐是否以剂量或频率依赖的方式诱发类似听觉过敏的行为。因此,本研究的目的是确定不同剂量的水杨酸盐如何改变反应时间-强度函数,并且使用短纯音来确定水杨酸盐是否在整个频谱范围内诱发类似听觉过敏的行为,还是仅在某些频率上诱发。与之前的生理学研究类似,我们开始观察到,水杨酸盐剂量为150mg/kg及以上时,对于60dB SPL及更高强度的声音,大鼠的反应时间比正常情况更快;这表明高剂量水杨酸盐下大鼠出现了听觉过敏。此外,高剂量水杨酸盐显著缩短了所有测试刺激频率下的反应时间,这表明中枢神经兴奋性机制可能是水杨酸盐诱导的响度感知变化和听觉过敏的潜在驱动因素。

相似文献

1
Salicylate-induced hyperacusis in rats: Dose- and frequency-dependent effects.
Hear Res. 2017 Jul;350:133-138. doi: 10.1016/j.heares.2017.04.004. Epub 2017 Apr 27.
2
Loudness perception affected by high doses of salicylate--a behavioral model of hyperacusis.
Behav Brain Res. 2014 Sep 1;271:16-22. doi: 10.1016/j.bbr.2014.05.045. Epub 2014 May 29.
3
Early age noise exposure increases loudness perception - A novel animal model of hyperacusis.
Hear Res. 2017 Apr;347:11-17. doi: 10.1016/j.heares.2016.06.018. Epub 2016 Oct 13.
4
Testing the Central Gain Model: Loudness Growth Correlates with Central Auditory Gain Enhancement in a Rodent Model of Hyperacusis.
Neuroscience. 2019 May 21;407:93-107. doi: 10.1016/j.neuroscience.2018.09.036. Epub 2018 Oct 5.
5
Noise-induced hearing loss induces loudness intolerance in a rat Active Sound Avoidance Paradigm (ASAP).
Hear Res. 2017 Sep;353:197-203. doi: 10.1016/j.heares.2017.07.001. Epub 2017 Jul 8.
7
Tinnitus and hyperacusis: Contributions of paraflocculus, reticular formation and stress.
Hear Res. 2017 Jun;349:208-222. doi: 10.1016/j.heares.2017.03.005. Epub 2017 Mar 7.
8
Auditory Brainstem Changes in Timing may Underlie Hyperacusis in a Salicylate-induced Acute Rat Model.
Neuroscience. 2020 Feb 1;426:129-140. doi: 10.1016/j.neuroscience.2019.11.038. Epub 2019 Dec 14.
9
Using auditory reaction time to measure loudness growth in rats.
Hear Res. 2020 Sep 15;395:108026. doi: 10.1016/j.heares.2020.108026. Epub 2020 Jul 8.
10
Gap detection methods for assessing salicylate-induced tinnitus and hyperacusis in rats.
Am J Audiol. 2008 Dec;17(2):S185-92. doi: 10.1044/1059-0889(2008/08-0006). Epub 2008 Oct 31.

引用本文的文献

1
Sodium salicylate improves detection of amplitude-modulated sound in mice.
iScience. 2024 Apr 9;27(5):109691. doi: 10.1016/j.isci.2024.109691. eCollection 2024 May 17.
3
Hearing loss and brain plasticity: the hyperactivity phenomenon.
Brain Struct Funct. 2021 Sep;226(7):2019-2039. doi: 10.1007/s00429-021-02313-9. Epub 2021 Jun 7.
4
Review: Neural Mechanisms of Tinnitus and Hyperacusis in Acute Drug-Induced Ototoxicity.
Am J Audiol. 2021 Oct 11;30(3S):901-915. doi: 10.1044/2020_AJA-20-00023. Epub 2021 Jan 19.
5
Ventral cochlear nucleus bushy cells encode hyperacusis in guinea pigs.
Sci Rep. 2020 Nov 26;10(1):20594. doi: 10.1038/s41598-020-77754-z.
6
Functional Neuroanatomy of Salicylate- and Noise-Induced Tinnitus and Hyperacusis.
Curr Top Behav Neurosci. 2021;51:133-160. doi: 10.1007/7854_2020_156.
8
Noise-Induced loudness recruitment and hyperacusis: Insufficient central gain in auditory cortex and amygdala.
Neuroscience. 2019 Dec 1;422:212-227. doi: 10.1016/j.neuroscience.2019.09.010. Epub 2019 Oct 26.
9
Aberrant thalamocortical coherence in an animal model of tinnitus.
J Neurophysiol. 2019 Mar 1;121(3):893-907. doi: 10.1152/jn.00053.2018. Epub 2019 Jan 9.
10
Testing the Central Gain Model: Loudness Growth Correlates with Central Auditory Gain Enhancement in a Rodent Model of Hyperacusis.
Neuroscience. 2019 May 21;407:93-107. doi: 10.1016/j.neuroscience.2018.09.036. Epub 2018 Oct 5.

本文引用的文献

1
Improving the Reliability of Tinnitus Screening in Laboratory Animals.
J Assoc Res Otolaryngol. 2017 Feb;18(1):183-195. doi: 10.1007/s10162-016-0597-1. Epub 2016 Nov 2.
2
Audiometric characteristics of hyperacusis patients.
Front Neurol. 2015 May 15;6:105. doi: 10.3389/fneur.2015.00105. eCollection 2015.
4
Salicylate-induced hearing loss and gap detection deficits in rats.
Front Neurol. 2015 Feb 20;6:31. doi: 10.3389/fneur.2015.00031. eCollection 2015.
5
Central gain control in tinnitus and hyperacusis.
Front Neurol. 2014 Oct 24;5:206. doi: 10.3389/fneur.2014.00206. eCollection 2014.
6
A review of hyperacusis and future directions: part I. Definitions and manifestations.
Am J Audiol. 2014 Dec;23(4):402-19. doi: 10.1044/2014_AJA-14-0010.
7
Salicylate-induced auditory perceptual disorders and plastic changes in nonclassical auditory centers in rats.
Neural Plast. 2014;2014:658741. doi: 10.1155/2014/658741. Epub 2014 May 7.
9
Loudness perception affected by early age hearing loss.
Hear Res. 2014 Jul;313:18-25. doi: 10.1016/j.heares.2014.04.002. Epub 2014 Apr 18.
10
Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus?
J Neurophysiol. 2014 Feb;111(3):552-64. doi: 10.1152/jn.00184.2013. Epub 2013 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验