Suppr超能文献

用于低剂量PET成像的磁共振引导内核期望最大化重建

MR-Guided Kernel EM Reconstruction for Reduced Dose PET Imaging.

作者信息

Bland James, Mehranian Abolfazl, Belzunce Martin A, Ellis Sam, McGinnity Colm J, Hammers Alexander, Reader Andrew J

机构信息

King's College London, St Thomas' Hospital, London, U.K.

King's College London & Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, U.K.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2018 May;2(3):235-243. doi: 10.1109/TRPMS.2017.2771490. Epub 2017 Nov 9.

Abstract

PET image reconstruction is highly susceptible to the impact of Poisson noise, and if shorter acquisition times or reduced injected doses are used, the noisy PET data become even more limiting. The recent development of kernel expectation maximisation (KEM) is a simple way to reduce noise in PET images, and we show in this work that impressive dose reduction can be achieved when the kernel method is used with MR-derived kernels. The kernel method is shown to surpass maximum likelihood expectation maximisation (MLEM) for the reconstruction of low-count datasets (corresponding to those obtained at reduced injected doses) producing visibly clearer reconstructions for unsmoothed and smoothed images, at all count levels. The kernel EM reconstruction of 10% of the data had comparable whole brain voxel-level error measures to the MLEM reconstruction of 100% of the data (for simulated data, at 100 iterations). For regional metrics, the kernel method at reduced dose levels attained a reduced coefficient of variation and more accurate mean values compared to MLEM. However, the advances provided by the kernel method are at the expense of possible over-smoothing of features unique to the PET data. Further assessment on clinical data is required to determine the level of dose reduction that can be routinely achieved using the kernel method, whilst maintaining the diagnostic utility of the scan.

摘要

正电子发射断层扫描(PET)图像重建极易受到泊松噪声的影响,并且如果使用更短的采集时间或更低的注射剂量,有噪声的PET数据的局限性会变得更大。核期望最大化(KEM)方法是近期发展起来的一种减少PET图像噪声的简单方法,并且我们在这项工作中表明,当核方法与磁共振成像(MR)衍生的核一起使用时,可以实现显著的剂量降低。结果显示,在重建低计数数据集(对应于降低注射剂量时获得的数据集)时,核方法优于最大似然期望最大化(MLEM)方法,在所有计数水平下,对于未平滑和已平滑的图像,核方法都能产生明显更清晰的重建图像。对10%的数据进行核期望最大化(EM)重建得到的全脑体素级误差测量结果与对100%的数据进行MLEM重建(对于模拟数据,在100次迭代时)的结果相当。对于区域指标,与MLEM相比,在降低剂量水平下的核方法具有更低的变异系数和更准确的平均值。然而,核方法带来的进步是以可能过度平滑PET数据特有的特征为代价的。需要对临床数据进行进一步评估,以确定使用核方法在保持扫描诊断效用的同时能够常规实现的剂量降低水平。

相似文献

1
MR-Guided Kernel EM Reconstruction for Reduced Dose PET Imaging.用于低剂量PET成像的磁共振引导内核期望最大化重建
IEEE Trans Radiat Plasma Med Sci. 2018 May;2(3):235-243. doi: 10.1109/TRPMS.2017.2771490. Epub 2017 Nov 9.
3
Spatially-Compact MR-Guided Kernel EM for PET Image Reconstruction.用于PET图像重建的空间紧凑式磁共振引导内核期望最大化算法
IEEE Trans Radiat Plasma Med Sci. 2018 Sep;2(5):470-482. doi: 10.1109/TRPMS.2018.2844559. Epub 2018 Jun 6.
8
PET Image Reconstruction With Kernel and Kernel Space Composite Regularizer.基于核与核空间复合正则化的 PET 图像重建。
IEEE Trans Med Imaging. 2023 Jun;42(6):1786-1798. doi: 10.1109/TMI.2023.3239929. Epub 2023 Jun 1.

引用本文的文献

2
Unified Noise-aware Network for Low-count PET Denoising with Varying Count Levels.用于不同计数水平低计数PET去噪的统一噪声感知网络
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):366-378. doi: 10.1109/trpms.2023.3334105. Epub 2023 Nov 20.
5
AI for PET image reconstruction.人工智能在正电子发射断层扫描图像重建中的应用。
Br J Radiol. 2023 Oct;96(1150):20230292. doi: 10.1259/bjr.20230292. Epub 2023 Sep 4.
10
Deep Kernel Representation for Image Reconstruction in PET.用于 PET 图像重建的深度核表示。
IEEE Trans Med Imaging. 2022 Nov;41(11):3029-3038. doi: 10.1109/TMI.2022.3176002. Epub 2022 Oct 27.

本文引用的文献

6
Anatomically-aided PET reconstruction using the kernel method.使用核方法的解剖学辅助PET重建。
Phys Med Biol. 2016 Sep 21;61(18):6668-6683. doi: 10.1088/0031-9155/61/18/6668. Epub 2016 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验