Suppr超能文献

使用一种用于血管分割的级联算法改进患病外周动脉中心线树检测。

Improved centerline tree detection of diseased peripheral arteries with a cascading algorithm for vascular segmentation.

作者信息

Lidayová Kristína, Frimmel Hans, Bengtsson Ewert, Smedby Örjan

机构信息

Uppsala University, Centre for Image Analysis, Division of Visual Information and Interaction, Uppsala, Sweden.

Uppsala University, Division of Scientific Computing, Department of Information Technology, Sweden.

出版信息

J Med Imaging (Bellingham). 2017 Apr;4(2):024004. doi: 10.1117/1.JMI.4.2.024004. Epub 2017 Apr 28.

Abstract

Vascular segmentation plays an important role in the assessment of peripheral arterial disease. The segmentation is very challenging especially for arteries with severe stenosis or complete occlusion. We present a cascading algorithm for vascular centerline tree detection specializing in detecting centerlines in diseased peripheral arteries. It takes a three-dimensional computed tomography angiography (CTA) volume and returns a vascular centerline tree, which can be used for accelerating and facilitating the vascular segmentation. The algorithm consists of four levels, two of which detect healthy arteries of varying sizes and two that specialize in different types of vascular pathology: severe calcification and occlusion. We perform four main steps at each level: appropriate parameters for each level are selected automatically, a set of centrally located voxels is detected, these voxels are connected together based on the connection criteria, and the resulting centerline tree is corrected from spurious branches. The proposed method was tested on 25 CTA scans of the lower limbs, achieving an average overlap rate of 89% and an average detection rate of 82%. The average execution time using four CPU cores was 70 s, and the technique was successful also in detecting very distal artery branches, e.g., in the foot.

摘要

血管分割在周围动脉疾病的评估中起着重要作用。这种分割极具挑战性,尤其是对于存在严重狭窄或完全闭塞的动脉。我们提出了一种用于血管中心线树检测的级联算法,专门用于检测病变外周动脉的中心线。它以三维计算机断层血管造影(CTA)容积作为输入,并返回一棵血管中心线树,可用于加速和辅助血管分割。该算法由四个层级组成,其中两个层级检测不同大小的健康动脉,另外两个层级专门处理不同类型的血管病变:严重钙化和闭塞。我们在每个层级执行四个主要步骤:自动选择每个层级的合适参数,检测一组位于中心的体素,根据连接标准将这些体素连接在一起,以及从伪分支中校正生成的中心线树。所提出的方法在25例下肢CTA扫描上进行了测试,平均重叠率达到89%,平均检测率为82%。使用四个CPU核心时的平均执行时间为70秒,该技术在检测非常远端的动脉分支(如足部的分支)时也很成功。

相似文献

1
Improved centerline tree detection of diseased peripheral arteries with a cascading algorithm for vascular segmentation.
J Med Imaging (Bellingham). 2017 Apr;4(2):024004. doi: 10.1117/1.JMI.4.2.024004. Epub 2017 Apr 28.
2
Detection of 3D Arterial Centerline Extraction in Spiral CT Coronary Angiography.
J Healthc Eng. 2021 Aug 21;2021:2670793. doi: 10.1155/2021/2670793. eCollection 2021.
3
Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
Med Image Anal. 2019 Jan;51:46-60. doi: 10.1016/j.media.2018.10.005. Epub 2018 Oct 22.
4
A novel method to model hepatic vascular network using vessel segmentation, thinning, and completion.
Med Biol Eng Comput. 2020 Apr;58(4):709-724. doi: 10.1007/s11517-020-02128-6. Epub 2020 Jan 18.
5
Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):74-81. doi: 10.1007/978-3-642-40760-4_10.
6
Superficial femoral artery calcification segmentation and detection in CT angiography using convolutional neural network.
Comput Biol Med. 2022 Sep;148:105951. doi: 10.1016/j.compbiomed.2022.105951. Epub 2022 Aug 11.
7
Comparing performance of centerline algorithms for quantitative assessment of brain vascular anatomy.
Anat Rec (Hoboken). 2012 Dec;295(12):2179-90. doi: 10.1002/ar.22603. Epub 2012 Oct 12.
8
Automated Coronary Artery Tracking with a Voronoi-Based 3D Centerline Extraction Algorithm.
J Imaging. 2023 Dec 1;9(12):268. doi: 10.3390/jimaging9120268.

引用本文的文献

1
Algorithm of Pulmonary Vascular Segment and Centerline Extraction.
Comput Math Methods Med. 2021 Aug 25;2021:3859386. doi: 10.1155/2021/3859386. eCollection 2021.

本文引用的文献

1
Topology adaptive vessel network skeleton extraction with novel medialness measuring function.
Comput Biol Med. 2015 Sep;64:40-61. doi: 10.1016/j.compbiomed.2015.06.006. Epub 2015 Jun 20.
2
Iterative tensor voting for perceptual grouping of ill-defined curvilinear structures.
IEEE Trans Med Imaging. 2011 Aug;30(8):1503-13. doi: 10.1109/TMI.2011.2129526. Epub 2011 Mar 17.
3
Multiple hypothesis template tracking of small 3D vessel structures.
Med Image Anal. 2010 Apr;14(2):160-71. doi: 10.1016/j.media.2009.12.003. Epub 2009 Dec 16.
4
A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes.
Med Image Anal. 2009 Dec;13(6):819-45. doi: 10.1016/j.media.2009.07.011. Epub 2009 Aug 12.
5
Robust vessel tree modeling.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):602-11. doi: 10.1007/978-3-540-85988-8_72.
7
Diagnostic accuracy of multislice CT angiography in peripheral arterial disease.
J Vasc Interv Radiol. 2006 Dec;17(12):1915-21. doi: 10.1097/01.RVI.0000248830.17550.50.
8
Multiscale vessel tracking.
IEEE Trans Med Imaging. 2004 Jan;23(1):130-3. doi: 10.1109/tmi.2003.819920.
9
Fast delineation and visualization of vessels in 3-D angiographic images.
IEEE Trans Med Imaging. 2000 Apr;19(4):337-46. doi: 10.1109/42.848184.
10
Consecutive screening and enrollment in clinical trials: the way to representative patient samples?
J Card Fail. 1998 Sep;4(3):225-30; discussion 231. doi: 10.1016/s1071-9164(98)80009-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验