Suppr超能文献

利用双单倍体系文库保护我们的遗传资源。

Safeguarding Our Genetic Resources with Libraries of Doubled-Haploid Lines.

作者信息

Melchinger Albrecht E, Schopp Pascal, Müller Dominik, Schrag Tobias A, Bauer Eva, Unterseer Sandra, Homann Linda, Schipprack Wolfgang, Schön Chris-Carolin

机构信息

Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany

Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany.

出版信息

Genetics. 2017 Jul;206(3):1611-1619. doi: 10.1534/genetics.115.186205. Epub 2017 May 3.

Abstract

Thousands of landraces are stored in seed banks as "gold reserves" for future use in plant breeding. In many crops, their utilization is hampered because they represent heterogeneous populations of heterozygous genotypes, which harbor a high genetic load. We show, with high-density genotyping in five landraces of maize, that libraries of doubled-haploid (DH) lines capture the allelic diversity of genetic resources in an unbiased way. By comparing allelic differentiation between heterozygous plants from the original landraces and 266 derived DH lines, we find conclusive evidence that, in the DH production process, sampling of alleles is random across the entire allele frequency spectrum, and purging of landraces from their genetic load does not act on specific genomic regions. Based on overall process efficiency, we show that generating DH lines is feasible for genetic material that has never been selected for inbreeding tolerance. We conclude that libraries of DH lines will make genetic resources accessible to crop improvement by linking molecular inventories of seed banks with meaningful phenotypes.

摘要

数千个地方品种作为“黄金储备”保存在种子库中,以备将来用于植物育种。在许多作物中,它们的利用受到阻碍,因为它们代表了杂合基因型的异质群体,具有很高的遗传负荷。我们通过对五个玉米地方品种进行高密度基因分型表明,双单倍体(DH)系文库以无偏的方式捕获了遗传资源的等位基因多样性。通过比较原始地方品种的杂合植株与266个衍生DH系之间的等位基因分化,我们找到了确凿的证据,即在DH生产过程中,等位基因的抽样在整个等位基因频率谱上是随机的,并且从地方品种中清除其遗传负荷不会作用于特定的基因组区域。基于整体过程效率,我们表明,对于从未因耐自交而被选择的遗传材料,生成DH系是可行的。我们得出结论,DH系文库将通过将种子库的分子清单与有意义的表型联系起来,使遗传资源可用于作物改良。

相似文献

1
Safeguarding Our Genetic Resources with Libraries of Doubled-Haploid Lines.
Genetics. 2017 Jul;206(3):1611-1619. doi: 10.1534/genetics.115.186205. Epub 2017 May 3.
2
Selective Loss of Diversity in Doubled-Haploid Lines from European Maize Landraces.
G3 (Bethesda). 2020 Jul 7;10(7):2497-2506. doi: 10.1534/g3.120.401196.
3
Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize.
Theor Appl Genet. 2017 May;130(5):861-873. doi: 10.1007/s00122-017-2856-x. Epub 2017 Feb 13.
4
Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding.
PLoS One. 2013;8(2):e57234. doi: 10.1371/journal.pone.0057234. Epub 2013 Feb 22.
6
European maize landraces made accessible for plant breeding and genome-based studies.
Theor Appl Genet. 2019 Dec;132(12):3333-3345. doi: 10.1007/s00122-019-03428-8. Epub 2019 Sep 26.
7
Genomic Prediction Within and Among Doubled-Haploid Libraries from Maize Landraces.
Genetics. 2018 Dec;210(4):1185-1196. doi: 10.1534/genetics.118.301286. Epub 2018 Sep 26.
8
Doubled haploid technology for line development in maize: technical advances and prospects.
Theor Appl Genet. 2019 Dec;132(12):3227-3243. doi: 10.1007/s00122-019-03433-x. Epub 2019 Sep 25.
9
Maize In Planta Haploid Inducer Lines: A Cornerstone for Doubled Haploid Technology.
Methods Mol Biol. 2021;2288:25-48. doi: 10.1007/978-1-0716-1335-1_2.
10
SNP-based assessment of genetic purity and diversity in maize hybrid breeding.
PLoS One. 2021 Aug 3;16(8):e0249505. doi: 10.1371/journal.pone.0249505. eCollection 2021.

引用本文的文献

1
Usefulness of temperate-adapted maize lines developed by doubled haploid and single-seed descent methods.
Theor Appl Genet. 2022 Jun;135(6):1829-1841. doi: 10.1007/s00122-022-04075-2. Epub 2022 Mar 19.
2
Increasing calling accuracy, coverage, and read-depth in sequence data by the use of haplotype blocks.
PLoS Genet. 2021 Dec 23;17(12):e1009944. doi: 10.1371/journal.pgen.1009944. eCollection 2021 Dec.
3
High-resolution association mapping with libraries of immortalized lines from ancestral landraces.
Theor Appl Genet. 2022 Jan;135(1):243-256. doi: 10.1007/s00122-021-03963-3. Epub 2021 Oct 20.
4
Selective Loss of Diversity in Doubled-Haploid Lines from European Maize Landraces.
G3 (Bethesda). 2020 Jul 7;10(7):2497-2506. doi: 10.1534/g3.120.401196.
5
Optimized breeding strategies to harness genetic resources with different performance levels.
BMC Genomics. 2020 May 11;21(1):349. doi: 10.1186/s12864-020-6756-0.
6
Genomic prediction with a maize collaborative panel: identification of genetic resources to enrich elite breeding programs.
Theor Appl Genet. 2020 Jan;133(1):201-215. doi: 10.1007/s00122-019-03451-9. Epub 2019 Oct 8.
7
Genomic prediction with multiple biparental families.
Theor Appl Genet. 2020 Jan;133(1):133-147. doi: 10.1007/s00122-019-03445-7. Epub 2019 Oct 8.
8
European maize landraces made accessible for plant breeding and genome-based studies.
Theor Appl Genet. 2019 Dec;132(12):3333-3345. doi: 10.1007/s00122-019-03428-8. Epub 2019 Sep 26.
9
HaploBlocker: Creation of Subgroup-Specific Haplotype Blocks and Libraries.
Genetics. 2019 Aug;212(4):1045-1061. doi: 10.1534/genetics.119.302283. Epub 2019 May 31.
10
Haploid male fertility and spontaneous chromosome doubling evaluated in a diallel and recurrent selection experiment in maize.
Theor Appl Genet. 2019 Aug;132(8):2273-2284. doi: 10.1007/s00122-019-03353-w. Epub 2019 May 6.

本文引用的文献

1
THE ROLE OF GENES OF LARGE EFFECT ON INBREEDING DEPRESSION IN MIMULUS GUTTATUS.
Evolution. 1999 Dec;53(6):1678-1691. doi: 10.1111/j.1558-5646.1999.tb04553.x.
2
Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize.
EMBO J. 2017 Mar 15;36(6):707-717. doi: 10.15252/embj.201796603. Epub 2017 Feb 22.
3
A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction in Maize.
Mol Plant. 2017 Mar 6;10(3):520-522. doi: 10.1016/j.molp.2017.01.011. Epub 2017 Feb 4.
4
MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction.
Nature. 2017 Feb 2;542(7639):105-109. doi: 10.1038/nature20827. Epub 2017 Jan 23.
5
Genomic prediction contributing to a promising global strategy to turbocharge gene banks.
Nat Plants. 2016 Oct 3;2:16150. doi: 10.1038/nplants.2016.150.
7
The Genetic Basis of Haploid Induction in Maize Identified with a Novel Genome-Wide Association Method.
Genetics. 2016 Apr;202(4):1267-76. doi: 10.1534/genetics.115.184234. Epub 2016 Feb 19.
10
Haploids: Constraints and opportunities in plant breeding.
Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):812-29. doi: 10.1016/j.biotechadv.2015.07.001. Epub 2015 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验