Suppr超能文献

利用多个双亲家系进行基因组预测。

Genomic prediction with multiple biparental families.

机构信息

Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Fruwirthstraße 21, 70599, Stuttgart, Germany.

出版信息

Theor Appl Genet. 2020 Jan;133(1):133-147. doi: 10.1007/s00122-019-03445-7. Epub 2019 Oct 8.

Abstract

For genomic prediction within biparental families using multiple biparental families, combined training sets comprising full-sibs from the same family and half-sib families are recommended to reach high and robust prediction accuracy, whereas inclusion of unrelated families is risky and can have negative effects. In recycling breeding, where elite inbreds are recombined to generate new source material, genomic and phenotypic information from lines of numerous biparental families (BPFs) is commonly available for genomic prediction (GP). For each BPF with a large number of candidates in the prediction set (PS), the training set (TS) can be composed of lines from the same full-sib family or multiple related and unrelated families to increase the TS size. GP was applied to BPFs generated in silico and from two published experiments to evaluate the prediction accuracy ([Formula: see text]) of different TS compositions. We compared [Formula: see text] for individual pairs of BPFs using as TS either full-sib, half-sib, or unrelated BPFs. While full-sibs yielded highly positive [Formula: see text] and half-sibs also mostly positive [Formula: see text] values, unrelated families had often negative [Formula: see text], and including these families in a combined TS reduced [Formula: see text]. By simulations, we demonstrated that optimized TS compositions exist, yielding 5-10% higher [Formula: see text] than the TS including all available BPFs. However, identification of poorly predictive families and finding the optimal TS composition with various quantitative-genetic parameters estimated from available data was not successful. Therefore, we suggest omitting unrelated families and combining in the TS full-sib and few half-sib families produced by specific mating designs, with a medium number (~ 50) of genotypes per family. This helps in balancing high [Formula: see text] in GP with a sufficient effective population size of the entire breeding program for securing high short- and long-term selection progress.

摘要

对于使用多个双亲家庭进行双亲家庭内的基因组预测,建议使用包含来自同一家庭的全同胞和半同胞家族的组合训练集,以达到高且稳健的预测准确性,而包含无关家庭则存在风险,并可能产生负面影响。在循环育种中,精英近交系被重组以产生新的原始材料,因此通常可以获得许多双亲家庭(BPF)的基因组和表型信息,用于基因组预测(GP)。对于预测集中有大量候选者的每个 BPF,可以使用来自同一全同胞家族或多个相关和无关家族的系来组成训练集(TS),以增加 TS 的大小。我们应用 GP 对计算机生成和两个已发表实验中的 BPF 进行了评估,以评估不同 TS 组成的预测准确性([Formula: see text])。我们比较了使用全同胞、半同胞或无关 BPF 作为 TS 的个体 BPF 对的[Formula: see text]。虽然全同胞产生了高度正的[Formula: see text],半同胞也大多产生了正的[Formula: see text]值,但无关家族往往产生负的[Formula: see text],并且将这些家族纳入组合 TS 会降低[Formula: see text]。通过模拟,我们证明了存在优化的 TS 组成,其产生的[Formula: see text]比包含所有可用 BPF 的 TS 高 5-10%。然而,识别预测能力差的家族并根据可用数据估计的各种数量遗传参数找到最佳的 TS 组成并不成功。因此,我们建议省略无关家族,并将特定交配设计产生的全同胞和少量半同胞家族纳入 TS,每个家族的基因型数量约为 50 个。这有助于在 GP 中实现高[Formula: see text],同时确保整个育种计划具有足够的有效群体大小,以确保短期和长期选择进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验