Suppr超能文献

用于基因组最佳线性无偏预测的留一法交叉验证的高效策略。

Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction.

作者信息

Cheng Hao, Garrick Dorian J, Fernando Rohan L

机构信息

Department of Animal Science, Iowa State University, Ames, 50011 Iowa USA.

Department of Statistics, Iowa State University, Ames, 50011 Iowa USA.

出版信息

J Anim Sci Biotechnol. 2017 May 2;8:38. doi: 10.1186/s40104-017-0164-6. eCollection 2017.

Abstract

BACKGROUND

A random multiple-regression model that simultaneously fit all allele substitution effects for additive markers or haplotypes as uncorrelated random effects was proposed for Best Linear Unbiased Prediction, using whole-genome data. Leave-one-out cross validation can be used to quantify the predictive ability of a statistical model.

METHODS

Naive application of Leave-one-out cross validation is computationally intensive because the training and validation analyses need to be repeated n times, once for each observation. Efficient Leave-one-out cross validation strategies are presented here, requiring little more effort than a single analysis.

RESULTS

Efficient Leave-one-out cross validation strategies is 786 times faster than the naive application for a simulated dataset with 1,000 observations and 10,000 markers and 99 times faster with 1,000 observations and 100 markers. These efficiencies relative to the naive approach using the same model will increase with increases in the number of observations.

CONCLUSIONS

Efficient Leave-one-out cross validation strategies are presented here, requiring little more effort than a single analysis.

摘要

背景

提出了一种随机多元回归模型,该模型将加性标记或单倍型的所有等位基因替代效应同时拟合为不相关随机效应,用于使用全基因组数据进行最佳线性无偏预测。留一法交叉验证可用于量化统计模型的预测能力。

方法

留一法交叉验证的简单应用计算量很大,因为训练和验证分析需要重复n次,每个观测值都要进行一次。本文提出了高效的留一法交叉验证策略,其工作量仅比单次分析稍多一点。

结果

对于一个有1000个观测值和10000个标记的模拟数据集,高效的留一法交叉验证策略比简单应用快786倍;对于有1000个观测值和100个标记的数据集,快99倍。相对于使用相同模型的简单方法,这些效率将随着观测值数量的增加而提高。

结论

本文提出了高效的留一法交叉验证策略,其工作量仅比单次分析稍多一点。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验