Department of Engineering Mechanics, Center for Mechanics and Materials, AML, Tsinghua University, Beijing, 100084, China.
Lab Chip. 2017 May 16;17(10):1689-1704. doi: 10.1039/c7lc00289k.
A variety of natural biological tissues (e.g., skin, ligaments, spider silk, blood vessel) exhibit 'J-shaped' stress-strain behavior, thereby combining soft, compliant mechanics and large levels of stretchability, with a natural 'strain-limiting' mechanism to prevent damage from excessive strain. Synthetic materials with similar stress-strain behaviors have potential utility in many promising applications, such as tissue engineering (to reproduce the nonlinear mechanical properties of real biological tissues) and biomedical devices (to enable natural, comfortable integration of stretchable electronics with biological tissues/organs). Recent advances in this field encompass developments of novel material/structure concepts, fabrication approaches, and unique device applications. This review highlights five representative strategies, including designs that involve open network, wavy and wrinkled morphologies, helical layouts, kirigami and origami constructs, and textile formats. Discussions focus on the underlying ideas, the fabrication/assembly routes, and the microstructure-property relationships that are essential for optimization of the desired 'J-shaped' stress-strain responses. Demonstration applications provide examples of the use of these designs in deformable electronics and biomedical devices that offer soft, compliant mechanics but with inherent robustness against damage from excessive deformation. We conclude with some perspectives on challenges and opportunities for future research.
多种天然生物组织(如皮肤、韧带、蜘蛛丝、血管)表现出“J 形”的应力-应变行为,从而将柔软、顺应的力学性能与较大的拉伸能力相结合,并具有天然的“应变限制”机制,以防止因过度应变而造成损伤。具有类似应力-应变行为的合成材料在许多有前途的应用中具有潜在的用途,例如组织工程(以复制真实生物组织的非线性力学性能)和生物医学设备(以实现可拉伸电子产品与生物组织/器官的自然、舒适的集成)。该领域的最新进展包括新型材料/结构概念、制造方法和独特的设备应用的发展。这篇综述强调了五种代表性的策略,包括涉及开放网络、波浪和褶皱形态、螺旋布局、剪纸和折纸结构以及纺织品格式的设计。讨论集中在基本理念、制造/组装方法以及微观结构-性能关系上,这些对于优化所需的“J 形”应力-应变响应至关重要。示范应用提供了这些设计在可变形电子产品和生物医学设备中的应用示例,这些设计提供了柔软、顺应的力学性能,但具有对过度变形造成的损伤的固有鲁棒性。最后,我们对未来研究的挑战和机遇进行了一些展望。