Suppr超能文献

使用京尼平交联提高静电纺丝壳聚糖-聚己内酯支架的稳定性和机械强度以用于生物医学应用

Improving Stability and Mechanical Strength of Electrospun Chitosan-Polycaprolactone Scaffolds Using Genipin Cross-linking for Biomedical Applications.

作者信息

Uma Thanu Krishnan Neela Nagalekshmi, Szewczyk Piotr K, Karbowniczek Joanna E, Polak Martyna, Knapczyk-Korczak Joanna, Stachewicz Urszula

机构信息

Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow, 30-059, Poland.

出版信息

Macromol Rapid Commun. 2025 Jul;46(13):e2400869. doi: 10.1002/marc.202400869. Epub 2024 Dec 27.

Abstract

Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties. Scanning electron microscopy indicated a uniform morphology of the electrospun fibers, and further, the crystallinity of the scaffolds before and after cross-linking is verified. Fourier-transform infrared spectroscopy is used to analyze the chemical structure, identifying the presence of trifluoroacetic acid residues in the as-spun fibers. These residues are successfully eliminated through neutralization and cross-linking, which are critical for enhancing stability and cell viability in in-vitro studies. Mechanical testing revealed that cross-linked CS+PCL scaffolds exhibit a 350% increase in tensile strength compared to pure CS, and zeta potential reaches the favorable for cell development -26.27 mV. The cytotoxicity assay results with murine NIH 3T3 fibroblast cells indicate the suitability of CS+PCL scaffolds for targeted tissue engineering and wound healing. This work establishes the potential for fine-tuning scaffold properties to create stable, functional, and biocompatible substrates for extended biomedical use.

摘要

由于其高比表面积和可调节的特性,电纺纳米纤维支架在生物医学应用中变得至关重要。壳聚糖(CS)被广泛使用,但其快速降解限制了其有效性。本研究通过将CS与聚己内酯(PCL)混合并应用京尼平交联来增强其稳定性和机械性能,从而解决了这一限制。扫描电子显微镜显示电纺纤维形态均匀,并且进一步验证了交联前后支架的结晶度。傅里叶变换红外光谱用于分析化学结构,确定初纺纤维中三氟乙酸残基的存在。通过中和和交联成功消除了这些残基,这对于在体外研究中提高稳定性和细胞活力至关重要。力学测试表明,与纯CS相比,交联的CS+PCL支架的拉伸强度提高了350%,并且zeta电位达到有利于细胞发育的-26.27 mV。用小鼠NIH 3T3成纤维细胞进行的细胞毒性试验结果表明CS+PCL支架适用于靶向组织工程和伤口愈合。这项工作确立了微调支架特性以创建用于扩展生物医学用途的稳定、功能性和生物相容性基质的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa1/12227225/a591329c2652/MARC-46-2400869-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验