Suppr超能文献

利用透射菊池衍射对α+β钛合金中的α变体进行表征。

Using transmission Kikuchi diffraction to characterise α variants in an α+β titanium alloy.

作者信息

Tong V, Joseph S, Ackerman A K, Dye D, Britton T B

机构信息

Department of Materials, Royal School of Mines, Imperial College London, Kensington, London, SW7 2AZ, UK.

出版信息

J Microsc. 2017 Sep;267(3):318-329. doi: 10.1111/jmi.12569. Epub 2017 May 4.

Abstract

Two phase titanium alloys are important for high-performance engineering components, such as aeroengine discs. The microstructures of these alloys are tailored during thermomechanical processing to precisely control phase fractions, morphology and crystallographic orientations. In bimodal two phase (α + β) Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) alloys there are often three microstructural lengthscales to consider: large (∼10 μm) equiaxed primary α; >200 nm thick plate α with a basketweave morphology; and very fine scaled (<50 nm plate thickness) secondary α that grows between the larger α plates surrounded by retained β. In this work, we utilise high spatial resolution transmission Kikuchi diffraction (TKD, also known as transmission-based electron backscatter diffraction, t-EBSD) and scanning electron microscopy (SEM)-based forward scattering electron imaging to resolve the structures and orientations of basketweave and secondary α in Ti-6242. We analyse the α variants formed within one prior β grain, and test whether existing theories of habit planes of the phase transformation are upheld. Our analysis is important in understanding both the thermomechanical processing strategy of new bimodal two-phase titanium alloys, as well as the ultimate performance of these alloys in complex loading regimes such as dwell fatigue. Our paper champions the significant increase in spatial resolution afforded using transmission techniques, combined with the ease of SEM-based analysis using conventional electron backscatter diffraction (EBSD) systems and forescatter detector (FSD) imaging, to study the nanostructure of real-world engineering alloys.

摘要

双相钛合金对于高性能工程部件(如航空发动机叶片)非常重要。这些合金的微观结构在热机械加工过程中进行定制,以精确控制相分数、形态和晶体取向。在双峰双相(α + β)Ti-6Al-2Sn-4Zr-2Mo(Ti-6242)合金中,通常有三个微观结构长度尺度需要考虑:大尺寸(约10μm)等轴初生α;厚度大于200nm的具有交织形态的板状α;以及非常细尺度(板厚<50nm)的次生α,其在被保留β包围的较大α板之间生长。在这项工作中,我们利用高空间分辨率透射菊池衍射(TKD,也称为基于透射的电子背散射衍射,t-EBSD)和基于扫描电子显微镜(SEM)的前向散射电子成像来解析Ti-6242中交织和次生α的结构与取向。我们分析在一个原始β晶粒内形成的α变体,并测试相变惯习面的现有理论是否成立。我们的分析对于理解新型双峰双相钛合金的热机械加工策略以及这些合金在诸如驻留疲劳等复杂加载条件下的最终性能都很重要。我们的论文倡导利用透射技术显著提高空间分辨率,结合使用传统电子背散射衍射(EBSD)系统和前向散射探测器(FSD)成像进行基于SEM的分析的便捷性,来研究实际工程合金的纳米结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ec/6849626/7c971e920979/JMI-267-318-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验