Suppr超能文献

商业家禽中疫苗控制型和非控制型禽传染性支气管炎病毒的不同进化轨迹。

Different evolutionary trajectories of vaccine-controlled and non-controlled avian infectious bronchitis viruses in commercial poultry.

作者信息

Jackwood Mark W, Lee Dong-Hun

机构信息

Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA, United States of America.

Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, Athens GA, United States of America.

出版信息

PLoS One. 2017 May 4;12(5):e0176709. doi: 10.1371/journal.pone.0176709. eCollection 2017.

Abstract

To determine the genetic and epidemiological relationship of infectious bronchitis virus (IBV) isolates from commercial poultry to attenuated live IBV vaccines we conducted a phylogenetic network analysis on the full-length S1 sequence for Arkansas (Ark), Massachusetts (Mass) and Delmarva/1639 (DMV/1639) type viruses isolated in 2015 from clinical cases by 3 different diagnostic laboratories. Phylogenetic network analysis of Ark isolates showed two predominant groups linked by 2 mutations, consistent with subpopulations found in commercial vaccines for this IBV type. In addition, a number of satellite groups surrounding the two predominant populations were observed for the Ark type virus, which is likely due to mutations associated with the nature of this vaccine to persist in flocks. The phylogenetic network analysis of Mass-type viruses shows two groupings corresponding to different manufacturers vaccine sequences. No satellite groups were observed for Mass-type viruses, which is consistent with no persistence of this vaccine type in the field. At the time of collection, no vaccine was being used for the DMV/1639 type viruses and phylogenetic network analysis showed a dispersed network suggesting no clear change in genetic distribution. Selection pressure analysis showed that the DMV/1639 and Mass-type strains were evolving under negative selection, whereas the Ark type viruses had evolved under positive selection. This data supports the hypothesis that live attenuated vaccine usage does play a role in the genetic profile of similar IB viruses in the field and phylogenetic network analysis can be used to identify vaccine and vaccine origin isolates, which is important for our understanding of the role live vaccines play in the evolutionary trajectory of those viruses.

摘要

为确定来自商业家禽的传染性支气管炎病毒(IBV)分离株与减毒活IBV疫苗之间的遗传和流行病学关系,我们对2015年由3个不同诊断实验室从临床病例中分离出的阿肯色州(Ark)、马萨诸塞州(Mass)和德尔马瓦/1639(DMV/1639)型病毒的全长S1序列进行了系统发育网络分析。对Ark分离株的系统发育网络分析显示,两个主要群体由2个突变连接,这与该IBV型商业疫苗中发现的亚群一致。此外,观察到Ark型病毒在两个主要群体周围有许多卫星群体,这可能是由于与该疫苗性质相关的突变在鸡群中持续存在。对Mass型病毒的系统发育网络分析显示,有两个分组对应于不同制造商的疫苗序列。未观察到Mass型病毒的卫星群体,这与该疫苗类型在田间没有持续性一致。在收集样本时,没有使用针对DMV/1639型病毒的疫苗,系统发育网络分析显示为分散网络,表明遗传分布没有明显变化。选择压力分析表明,DMV/1639和Mass型毒株在负选择下进化,而Ark型病毒在正选择下进化。该数据支持以下假设:减毒活疫苗的使用确实在田间类似IB病毒的遗传特征中起作用,并且系统发育网络分析可用于识别疫苗及疫苗来源分离株,这对于我们理解活疫苗在这些病毒进化轨迹中所起的作用很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d3/5417570/8b024f694ccb/pone.0176709.g001.jpg

相似文献

1
5
Kidney Cell-Adapted Infectious Bronchitis ArkDPI Vaccine is Stable and Protective.
Avian Dis. 2017 Jun;61(2):221-228. doi: 10.1637/11537-111416-Reg.1.
9
Cross-Protection by Infectious Bronchitis Viruses Under Controlled Experimental Conditions.
Avian Dis. 2015 Dec;59(4):532-6. doi: 10.1637/11231-070615-Reg.1.

引用本文的文献

1
Inhibiting Infectious Bronchitis Virus PLpro Using Ubiquitin Variants.
Int J Mol Sci. 2025 May 29;26(11):5254. doi: 10.3390/ijms26115254.
3
Pathological and molecular investigation of infectious bronchitis in broilers: analyzing the impact of biosecurity lapses.
Front Vet Sci. 2025 Feb 28;12:1548248. doi: 10.3389/fvets.2025.1548248. eCollection 2025.
8
Genetic analysis of infectious bronchitis virus (IBV) in vaccinated poultry populations over a period of 10 years.
Avian Pathol. 2023 Jun;52(3):157-167. doi: 10.1080/03079457.2023.2177140. Epub 2023 Feb 24.
10
Molecular Epidemiology of Turkey Coronaviruses in Poland.
Viruses. 2022 May 11;14(5):1023. doi: 10.3390/v14051023.

本文引用的文献

2
Evaluation of infectious bronchitis virus Arkansas-type vaccine failure in commercial broilers.
Avian Dis. 2013 Jun;57(2):248-59. doi: 10.1637/10459-112812-Reg.1.
3
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
4
In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences.
PLoS One. 2013 Jun 28;8(6):e67008. doi: 10.1371/journal.pone.0067008. Print 2013.
5
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Mol Biol Evol. 2013 Apr;30(4):772-80. doi: 10.1093/molbev/mst010. Epub 2013 Jan 16.
6
Molecular evolution and emergence of avian gammacoronaviruses.
Infect Genet Evol. 2012 Aug;12(6):1305-11. doi: 10.1016/j.meegid.2012.05.003. Epub 2012 May 17.
7
An emerging recombinant cluster of nephropathogenic strains of avian infectious bronchitis virus in Korea.
Infect Genet Evol. 2011 Apr;11(3):678-85. doi: 10.1016/j.meegid.2011.01.007. Epub 2011 Jan 19.
9
Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13. doi: 10.1073/pnas.0508200103. Epub 2006 Mar 20.
10
Nidovirales: evolving the largest RNA virus genome.
Virus Res. 2006 Apr;117(1):17-37. doi: 10.1016/j.virusres.2006.01.017. Epub 2006 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验