Sui Mao, Li Ming-Yu, Kunwar Sundar, Pandey Puran, Zhang Quanzhen, Lee Jihoon
College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul, South Korea.
Institute of Nanoscale Science and Engineering, University of Arkansas, Fayetteville, AR, United States of America.
PLoS One. 2017 May 4;12(5):e0177048. doi: 10.1371/journal.pone.0177048. eCollection 2017.
Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.
金属纳米结构(NSs)已被广泛应用于各种领域,其物理、化学、光学和催化性能强烈依赖于其表面形态。在这项工作中,通过控制退火温度和保温时间以及不同厚度的铂薄膜,展示了在c面蓝宝石(0001)上自组装铂纳米结构的形态和光学演变。铂纳米结构的形成是由铂薄膜的表面扩散、团聚以及表面和界面能最小化导致的,这依赖于诸如系统温度、薄膜厚度和退火时间等生长参数。基于增强的表面扩散和伏尔默 - 韦伯生长模型,10纳米厚的铂层在650°C以下显示出覆盖纳米颗粒(NPs)的形成,在700°C以上显示出孤立的铂纳米颗粒,而基于聚并生长模型,20纳米厚的铂层形成了更大的波浪状纳米结构。铂纳米结构的形态根据所应用的生长参数表现出明显差异。通过控制保温时间,观察到从密集的铂纳米颗粒到网络状和大簇的逐渐转变,这与瑞利不稳定性和奥斯特瓦尔德熟化相关。根据形态演变,各种铂纳米结构在反射光谱中表现出显著差异:即结合铂纳米结构的形态和表面覆盖率讨论了紫外 - 可见和近红外区域的增强以及相关的光学性质。