Li Ming-Yu, Sui Mao, Pandey Puran, Zhang Quanzhen, Kim Eun-Soo, Lee Jihoon
College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 139-701, South Korea.
Institute of Nanoscale Science and Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
Nanoscale Res Lett. 2015 Dec;10(1):380. doi: 10.1186/s11671-015-1084-z. Epub 2015 Sep 30.
The size, density, and configurations of Au nanoparticles (NPs) can play important roles in controlling the electron mobility, light absorption, and localized surface plasmon resonance, and further in the Au NP-assisted nanostructure fabrications. In this study, we present a systematical investigation on the evolution of Au NPs and nanostructures on Si (111) by controlling the deposition amount (DA), annealing temperature (AT), and dwelling time (DT). Under an identical growth condition, the morphologies of Au NPs and nanostructures drastically evolve when the DA is only slightly varied, based on the Volmer-Weber and coalescence models: i.e. I: mini NPs, II: mid-sized round dome-shaped Au NPs, III: large Au NPs, and IV: coalesced nanostructures. With the AT control, three distinctive ranges are observed: i.e., NP nucleation, Au NPs maturation and melting. The gradual dimensional expansion of Au NPs is always compensated with the density reduction, which is explained with the thermodynamic theory. The DT effect is relatively minor on Au NPs, a sharp contrast to other metallic NPs, which is discussed based on the Ostwald-ripening.
金纳米颗粒(NP)的尺寸、密度和形态在控制电子迁移率、光吸收和局域表面等离子体共振方面发挥着重要作用,进而在金纳米颗粒辅助的纳米结构制备中也起着重要作用。在本研究中,我们通过控制沉积量(DA)、退火温度(AT)和保温时间(DT),对硅(111)上金纳米颗粒和纳米结构的演变进行了系统研究。在相同的生长条件下,基于伏尔默-韦伯模型和聚并模型,当沉积量仅略有变化时,金纳米颗粒和纳米结构的形态会发生剧烈演变:即I:微小纳米颗粒,II:中等尺寸的圆顶形金纳米颗粒,III:大尺寸金纳米颗粒,IV:聚并纳米结构。通过控制退火温度,观察到三个不同的范围:即纳米颗粒成核、金纳米颗粒成熟和熔化。金纳米颗粒尺寸的逐渐扩大总是伴随着密度的降低,这可以用热力学理论来解释。保温时间对金纳米颗粒的影响相对较小,这与其他金属纳米颗粒形成了鲜明对比,我们基于奥斯特瓦尔德熟化对此进行了讨论。