Shen Judong, Song Kijoung, Slater Andrew J, Ferrero Enrico, Nelson Matthew R
Biostatistics and Research Decision Sciences, Merck Research Laboratories, Rahway, NJ, USA 07065.
Target Sciences, GSK, King of Prussia, Philadelphia, PA 27513, USA.
Bioinformatics. 2017 Sep 1;33(17):2784-2786. doi: 10.1093/bioinformatics/btx274.
We developed the STOPGAP (Systematic Target OPportunity assessment by Genetic Association Predictions) database, an extensive catalog of human genetic associations mapped to effector gene candidates. STOPGAP draws on a variety of publicly available GWAS associations, linkage disequilibrium (LD) measures, functional genomic and variant annotation sources. Algorithms were developed to merge the association data, partition associations into non-overlapping LD clusters, map variants to genes and produce a variant-to-gene score used to rank the relative confidence among potential effector genes. This database can be used for a multitude of investigations into the genes and genetic mechanisms underlying inter-individual variation in human traits, as well as supporting drug discovery applications.
Shell, R, Perl and Python scripts and STOPGAP R data files (version 2.5.1 at publication) are available at https://github.com/StatGenPRD/STOPGAP . Some of the most useful STOPGAP fields can be queried through an R Shiny web application at http://stopgapwebapp.com .
Supplementary data are available at Bioinformatics online.
我们开发了STOPGAP(通过遗传关联预测进行系统目标机会评估)数据库,这是一个广泛的人类遗传关联目录,映射到效应基因候选物。STOPGAP利用了各种公开可用的全基因组关联研究(GWAS)关联、连锁不平衡(LD)测量、功能基因组和变异注释来源。我们开发了算法来合并关联数据,将关联划分为不重叠的LD簇,将变异映射到基因,并生成一个变异到基因的分数,用于对潜在效应基因之间的相对置信度进行排名。该数据库可用于对人类性状个体间变异的基因和遗传机制进行多种研究,以及支持药物发现应用。
Shell、R、Perl和Python脚本以及STOPGAP R数据文件(出版时版本为2.5.1)可在https://github.com/StatGenPRD/STOPGAP获取。一些最有用的STOPGAP字段可通过R Shiny网络应用程序在http://stopgapwebapp.com进行查询。
补充数据可在《生物信息学》在线获取。