Couchie Dominique, Vaisman Boris, Abderrazak Amna, Mahmood Dler Faieeq Darweesh, Hamza Magda M, Canesi Fanny, Diderot Vimala, El Hadri Khadija, Nègre-Salvayre Anne, Le Page Aurélie, Fulop Tamas, Remaley Alan T, Rouis Mustapha
From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.).
Circulation. 2017 Aug 1;136(5):464-475. doi: 10.1161/CIRCULATIONAHA.117.027612. Epub 2017 May 4.
Thioredoxin (TRX)-1, a ubiquitous 12-kDa protein, exerts antioxidant and anti-inflammatory effects. In contrast, the truncated form, called TRX80, produced by macrophages induces upregulation of proinflammatory cytokines. TRX80 also promotes the differentiation of mouse peritoneal and human macrophages toward a proinflammatory M1 phenotype.
TRX1 and TRX80 plasma levels were determined with a specific ELISA. A disintegrin and metalloproteinase domain-containing protein (ADAM)-10, ADAM-17, and ADAM-10 activities were measured with SensoLyte 520 ADAM10 Activity Assay Kit, Fluorimetric, and InnoZyme TACE Activity Kit, respectively. Western immunoblots were performed with specific antibodies to ADAM-10 or ADAM-17. Angiogenesis study was evaluated in vitro with human microvascular endothelial cells-1 and in vivo with the Matrigel plug angiogenesis assay in mice. The expression of macrophage phenotype markers was investigated with real-time polymerase chain reaction. Phosphorylation of Akt, mechanistic target of rapamycin, and 70S6K was determined with specific antibodies. The effect of TRX80 on NLRP3 inflammasome activity was evaluated by measuring the level of interleukin-1β and -18 in the supernatants of activated macrophages with ELISA. Hearts were used for lesion surface evaluation and immunohistochemical studies, and whole descending aorta were stained with Oil Red O. For transgenic mice generation, the human scavenger receptor (SR-A) promoter/enhancer was used to drive macrophage-specific expression of human TRX80 in mice.
In this study, we observed a significant increase of plasma levels of TRX80 in old subjects compared with healthy young subjects. In parallel, an increase in expression and activity of ADAM-10 and ADAM-17 in old peripheral blood mononuclear cells compared with those of young subjects was observed. Furthermore, TRX80 was found to colocalize with tumor necrosis factor-α, a macrophage M1 marker, in human atherosclerotic plaque. In addition, TRX80 induced the expression of murine M1 macrophage markers through Akt2/mechanistic target of rapamycin-C1/70S6K pathway and activated the inflammasome NLRP3, leading to the release of interleukin-1β and -18, potent atherogenic cytokines. Moreover, TRX80 exerts a powerful angiogenic effect in both in vitro and in vivo mouse studies. Finally, transgenic mice that overexpress human TRX80 specifically in macrophages of apoE mice have a significant increase of aortic atherosclerotic lesions.
TRX80 showed an age-dependent increase in human plasma. In mouse models, TRX80 was associated with a proinflammatory status and increased atherosclerosis.
硫氧还蛋白(TRX)-1是一种普遍存在的12 kDa蛋白,具有抗氧化和抗炎作用。相比之下,巨噬细胞产生的截短形式TRX80可诱导促炎细胞因子上调。TRX80还促进小鼠腹腔巨噬细胞和人巨噬细胞向促炎M1表型分化。
采用特异性酶联免疫吸附测定法(ELISA)测定TRX1和TRX80的血浆水平。分别使用SensoLyte 520 ADAM10活性测定试剂盒、荧光法和InnoZyme TACE活性试剂盒测定含解聚素和金属蛋白酶结构域蛋白(ADAM)-10、ADAM-17及ADAM-10的活性。用针对ADAM-10或ADAM-17的特异性抗体进行蛋白质免疫印迹分析。用人微血管内皮细胞-1在体外评估血管生成,并在小鼠中用基质胶栓血管生成试验在体内评估血管生成。用实时聚合酶链反应研究巨噬细胞表型标志物的表达。用特异性抗体测定Akt、雷帕霉素作用靶点和70S6K的磷酸化。通过ELISA测量活化巨噬细胞上清液中白细胞介素-1β和-18的水平,评估TRX80对NLRP3炎性小体活性的影响。取心脏进行病变表面评估和免疫组织化学研究,用苏丹红O对整个降主动脉进行染色。为生成转基因小鼠,使用人清道夫受体(SR-A)启动子/增强子驱动人TRX80在小鼠巨噬细胞中的特异性表达。
在本研究中,我们观察到与健康年轻受试者相比,老年受试者血浆中TRX80水平显著升高。同时,与年轻受试者相比,老年外周血单核细胞中ADAM-10和ADAM-17的表达及活性增加。此外,在人动脉粥样硬化斑块中发现TRX80与巨噬细胞M1标志物肿瘤坏死因子-α共定位。此外,TRX80通过Akt2/雷帕霉素作用靶点-C1/70S6K途径诱导小鼠M1巨噬细胞标志物的表达,并激活炎性小体NLRP3,导致促动脉粥样硬化细胞因子白细胞介素-1β和-18释放。此外,在体外和体内小鼠研究中,TRX80均发挥强大的血管生成作用。最后,在载脂蛋白E小鼠的巨噬细胞中特异性过表达人TRX80的转基因小鼠主动脉粥样硬化病变显著增加。
TRX80在人血浆中的水平随年龄增长而升高。在小鼠模型中,TRX80与促炎状态和动脉粥样硬化增加有关。