Fritz-Laylin Lillian K, Lord Samuel J, Mullins R Dyche
Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143.
J Cell Biol. 2017 Jun 5;216(6):1673-1688. doi: 10.1083/jcb.201701074. Epub 2017 May 4.
Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call "α-motility." Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE-activators of branched actin assembly-make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP's role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin.
多种真核细胞利用不同的迁移模式在复杂环境中爬行。为了理解其潜在机制及其进化关系,我们必须定义每种模式并识别其表型和分子标记。在本研究中,我们聚焦于一种广泛存在的迁移模式,其特征是具有动态的充满肌动蛋白的伪足,我们将其称为“α运动性”。挖掘基因组数据揭示了一个明显的趋势:只有同时具有WASP和SCAR/WAVE(肌动蛋白分支组装的激活因子)的生物体才会形成充满肌动蛋白的伪足。尽管已经证明SCAR能驱动伪足形成,但WASP在这一过程中的作用仍存在争议。我们推测这些基因共同代表了α运动性的遗传特征,因为两者都参与伪足形成。从人类中性粒细胞中去除WASP证实这两种蛋白质都参与了爆发性的肌动蛋白聚合、伪足形成和细胞迁移。WASP和WAVE也共定位于动态信号结构。此外,WASP与SCAR的共同存在正确地预测了致病壶菌中的α运动性,我们发现这些壶菌以>30 µm/分钟的速度爬行,并带有充满肌动蛋白的伪足。通过聚焦于许多真核生物中的一种迁移模式,我们确定了伪足形成的遗传标记,即α运动性的形态特征,为具有单一进化起源的广泛分布的细胞爬行模式提供了证据。