Chen Diandian Diana, Gray Richard A, Uzelac Ilija, Herndon Conner, Fenton Flavio H
School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, Georgia 30332, USA.
Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993-0002, USA.
Phys Rev Lett. 2017 Apr 21;118(16):168101. doi: 10.1103/PhysRevLett.118.168101. Epub 2017 Apr 20.
It is widely believed that one major life-threatening transition to chaotic fibrillation occurs via spiral-wave breakup that is preceded by spatiotemporal dispersion of refractoriness due to alternations in the duration of the cardiac action potential (AP). However, recent clinical and experimental evidence suggests that other characteristics of the AP may contribute to, and perhaps drive, this dangerous dynamical instability. To identify the relative roles of AP characteristics, we performed experiments in rabbit hearts under conditions to minimize AP duration dynamics which unmasked pronounced AP amplitude alternans just before the onset of fibrillation. We used a simplified ionic cell model to derive a return map and a stability condition that elucidates a novel underlying mechanism for AP alternans and spiral breakup. We found that inactivation of the sodium current is key to developing amplitude alternans and is directly connected to conduction block and initiation of arrhythmias. Simulations in 2D where AP amplitude alternation led to turbulence confirm our hypothesis.
人们普遍认为,一种主要的危及生命的向混乱颤动的转变是通过螺旋波破裂发生的,而螺旋波破裂之前是由于心脏动作电位(AP)持续时间的交替导致的不应期的时空分散。然而,最近的临床和实验证据表明,AP的其他特征可能促成并可能驱动这种危险的动态不稳定性。为了确定AP特征的相对作用,我们在兔心脏中进行了实验,条件是尽量减少AP持续时间动态变化,这揭示了在颤动开始前明显的AP振幅交替现象。我们使用一个简化的离子细胞模型来推导返回映射和一个稳定性条件,该条件阐明了AP交替和螺旋破裂的一种新的潜在机制。我们发现,钠电流的失活是产生振幅交替的关键,并且与传导阻滞和心律失常的起始直接相关。二维模拟中AP振幅交替导致湍流,证实了我们的假设。