Suppr超能文献

使用递归神经网络和储层计算对心律失常性心脏动作电位进行长期预测。

Long-Time Prediction of Arrhythmic Cardiac Action Potentials Using Recurrent Neural Networks and Reservoir Computing.

作者信息

Shahi Shahrokh, Marcotte Christopher D, Herndon Conner J, Fenton Flavio H, Shiferaw Yohannes, Cherry Elizabeth M

机构信息

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States.

School of Physics, Georgia Institute of Technology, Atlanta, GA, United States.

出版信息

Front Physiol. 2021 Sep 27;12:734178. doi: 10.3389/fphys.2021.734178. eCollection 2021.

Abstract

The electrical signals triggering the heart's contraction are governed by non-linear processes that can produce complex irregular activity, especially during or preceding the onset of cardiac arrhythmias. Forecasts of cardiac voltage time series in such conditions could allow new opportunities for intervention and control but would require efficient computation of highly accurate predictions. Although machine-learning (ML) approaches hold promise for delivering such results, non-linear time-series forecasting poses significant challenges. In this manuscript, we study the performance of two recurrent neural network (RNN) approaches along with echo state networks (ESNs) from the reservoir computing (RC) paradigm in predicting cardiac voltage data in terms of accuracy, efficiency, and robustness. We show that these ML time-series prediction methods can forecast synthetic and experimental cardiac action potentials for at least 15-20 beats with a high degree of accuracy, with ESNs typically two orders of magnitude faster than RNN approaches for the same network size.

摘要

触发心脏收缩的电信号受非线性过程支配,这些过程可产生复杂的不规则活动,尤其是在心律失常发作期间或之前。在这种情况下对心脏电压时间序列进行预测可为干预和控制带来新机会,但需要高效计算高度准确的预测结果。尽管机器学习(ML)方法有望实现这样的结果,但非线性时间序列预测带来了重大挑战。在本论文中,我们研究了两种递归神经网络(RNN)方法以及来自储层计算(RC)范式的回声状态网络(ESN)在预测心脏电压数据时在准确性、效率和稳健性方面的性能。我们表明,这些ML时间序列预测方法能够以高度准确性预测合成和实验性心脏动作电位至少15 - 20个搏动,对于相同的网络规模,ESN通常比RNN方法快两个数量级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f4/8502981/f0e6846071ec/fphys-12-734178-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验