Knee George C, Rowe Patrick, Smith Luke D, Troisi Alessandro, Datta Animesh
London Centre for Nanotechnology, Thomas Young Centre, and Department of Physics and Astronomy, University College London , 17-19 Gordon Street, London WC1H 0AH, United Kingdom.
Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom.
J Phys Chem Lett. 2017 May 18;8(10):2328-2333. doi: 10.1021/acs.jpclett.7b00829. Epub 2017 May 11.
We study a large number of physically-plausible arrangements of chromophores, generated via a computational method involving stochastic real-space transformations of a naturally-occurring "reference" structure, illustrating our methodology using the well-studied Fenna-Matthews-Olson complex (FMO). To explore the idea that the natural structure has been tuned for efficient energy transport, we use an atomic transition charge method to calculate the excitonic couplings of each generated structure and a Lindblad master equation to study the quantum transport of an exciton from a "source" to a "drain" chromophore. We find significant correlations between structure and transport efficiency: High-performing structures tend to be more compact and, among those, the best structures display a certain orientation of the chromophores, particularly the chromophore closest to the source-to-drain vector. We conclude that, subject to reasonable, physically motivated constraints, the FMO complex is highly attuned to the purpose of energy transport, partly by exploiting these structural motifs.
我们研究了大量通过计算方法生成的发色团物理上合理的排列,该方法涉及对天然存在的“参考”结构进行随机实空间变换,并使用经过充分研究的费纳-马修斯-奥尔森复合物(FMO)来说明我们的方法。为了探究天然结构已针对高效能量传输进行了优化这一观点,我们使用原子跃迁电荷方法来计算每个生成结构的激子耦合,并使用林德布拉德主方程来研究激子从“源”发色团到“漏”发色团的量子传输。我们发现结构与传输效率之间存在显著相关性:高性能结构往往更紧凑,其中最佳结构显示出发色团的特定取向,特别是最靠近源-漏向量的发色团。我们得出结论,在合理的、基于物理的约束条件下,FMO复合物高度适合能量传输的目的,部分原因是通过利用这些结构基序。