Suppr超能文献

用于量子动力学的机器学习:激发能量转移特性的深度学习

Machine learning for quantum dynamics: deep learning of excitation energy transfer properties.

作者信息

Häse Florian, Kreisbeck Christoph, Aspuru-Guzik Alán

机构信息

Department of Chemistry and Chemical Biology , Harvard University , Cambridge , 02138 , USA . Email:

出版信息

Chem Sci. 2017 Dec 1;8(12):8419-8426. doi: 10.1039/c7sc03542j. Epub 2017 Oct 23.

Abstract

Understanding the relationship between the structure of light-harvesting systems and their excitation energy transfer properties is of fundamental importance in many applications including the development of next generation photovoltaics. Natural light harvesting in photosynthesis shows remarkable excitation energy transfer properties, which suggests that pigment-protein complexes could serve as blueprints for the design of nature inspired devices. Mechanistic insights into energy transport dynamics can be gained by leveraging numerically involved propagation schemes such as the hierarchical equations of motion (HEOM). Solving these equations, however, is computationally costly due to the adverse scaling with the number of pigments. Therefore virtual high-throughput screening, which has become a powerful tool in material discovery, is less readily applicable for the search of novel excitonic devices. We propose the use of artificial neural networks to bypass the computational limitations of established techniques for exploring the structure-dynamics relation in excitonic systems. Once trained, our neural networks reduce computational costs by several orders of magnitudes. Our predicted transfer times and transfer efficiencies exhibit similar or even higher accuracies than frequently used approximate methods such as secular Redfield theory.

摘要

了解光捕获系统的结构与其激发能量转移特性之间的关系在许多应用中至关重要,包括下一代光伏技术的开发。光合作用中的自然光捕获表现出卓越的激发能量转移特性,这表明色素 - 蛋白质复合物可作为受自然启发的器件设计蓝图。通过利用诸如运动层次方程(HEOM)等数值复杂的传播方案,可以获得对能量传输动力学的机理洞察。然而,由于与色素数量成反比的不利缩放比例,求解这些方程的计算成本很高。因此,虚拟高通量筛选虽然已成为材料发现中的强大工具,但在寻找新型激子器件方面不太容易应用。我们建议使用人工神经网络来绕过现有技术在探索激子系统结构 - 动力学关系方面的计算限制。经过训练后,我们的神经网络将计算成本降低了几个数量级。我们预测的转移时间和转移效率表现出与诸如久期Redfield理论等常用近似方法相似甚至更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a82c/5863613/86cef2d0b97e/c7sc03542j-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验