Ito Hiroshi T
Max Planck Institute for Brain Research, Max-von-Laue Str. 4, 60438 Frankfurt am Main, Germany.
Neurosci Res. 2018 Apr;129:2-7. doi: 10.1016/j.neures.2017.04.016. Epub 2017 May 3.
Animals have the ability to navigate to a desired location by making use of information about environmental landmarks and their own movements. While decades of neuroscience research have identified neurons in the hippocampus and parahippocampal structures that represent an animal's position in space, it is still largely unclear how an animal can choose the next movement direction to reach a desired goal. As the goal destination is typically located somewhere outside of the range of sensory perception, the animal is required to rely on the internal metric of space to estimate the direction and distance of the destination to plan a next action. Therefore, the hippocampal spatial map should interact with action-planning systems in other cortical regions. In accordance with this idea, several recent studies have indicated the importance of functional interactions between the hippocampus and the prefrontal cortex for goal-directed navigation. In this paper, I will review these studies and discuss how an animal can estimate its future positions correspond to a next movement. Investigation of the navigation problem may further provide general insights into internal models of the brain for action planning.
动物有能力利用有关环境地标和自身运动的信息导航到期望的位置。尽管数十年的神经科学研究已经在海马体和海马旁结构中识别出代表动物在空间中位置的神经元,但动物如何选择下一个运动方向以到达期望目标在很大程度上仍不清楚。由于目标目的地通常位于感官感知范围之外,动物需要依靠空间的内部度量来估计目的地的方向和距离,以便规划下一步行动。因此,海马体空间地图应与其他皮质区域的行动规划系统相互作用。根据这一观点,最近的几项研究表明,海马体与前额叶皮质之间的功能相互作用对于目标导向导航至关重要。在本文中,我将回顾这些研究,并讨论动物如何估计其未来位置与下一步运动的对应关系。对导航问题的研究可能会进一步为大脑用于行动规划的内部模型提供一般性见解。