Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Microsoft Research, New York, New York 10012
J Neurosci. 2022 Jan 12;42(2):299-312. doi: 10.1523/JNEUROSCI.1327-21.2021. Epub 2021 Nov 19.
As we navigate the world, we use learned representations of relational structures to explore and to reach goals. Studies of how relational knowledge enables inference and planning are typically conducted in controlled small-scale settings. It remains unclear, however, how people use stored knowledge in continuously unfolding navigation (e.g., walking long distances in a city). We hypothesized that multiscale predictive representations guide naturalistic navigation in humans, and these scales are organized along posterior-anterior prefrontal and hippocampal hierarchies. We conducted model-based representational similarity analyses of neuroimaging data collected while male and female participants navigated realistically long paths in virtual reality. We tested the pattern similarity of each point, along each path, to a weighted sum of its successor points within predictive horizons of different scales. We found that anterior PFC showed the largest predictive horizons, posterior hippocampus the smallest, with the anterior hippocampus and orbitofrontal regions in between. Our findings offer novel insights into how cognitive maps support hierarchical planning at multiple scales. Whenever we navigate the world, we represent our journey at multiple horizons: from our immediate surroundings to our distal goal. How are such cognitive maps at different horizons simultaneously represented in the brain? Here, we applied a reinforcement learning-based analysis to neuroimaging data acquired while participants virtually navigated their hometown. We investigated neural patterns in the hippocampus and PFC, key cognitive map regions. We uncovered predictive representations with multiscale horizons in prefrontal and hippocampal gradients, with the longest predictive horizons in anterior PFC and the shortest in posterior hippocampus. These findings provide empirical support for the computational hypothesis that multiscale neural representations guide goal-directed navigation. This advances our understanding of hierarchical planning in everyday navigation of realistic distances.
当我们在这个世界上导航时,我们使用学到的关系结构表示来探索和实现目标。关于关系知识如何支持推理和规划的研究通常在受控的小规模环境中进行。然而,人们如何在不断展开的导航(例如,在城市中长距离行走)中使用存储的知识仍然不清楚。我们假设多尺度预测表示指导人类的自然导航,这些尺度沿着后-前前额叶和海马体层次组织。我们对男性和女性参与者在虚拟现实中真实地长距离导航时收集的神经影像学数据进行了基于模型的代表性相似性分析。我们测试了每个点沿着每条路径与不同尺度预测范围内其后续点的加权和的模式相似性。我们发现,前额叶皮质的预测范围最大,海马体的预测范围最小,而海马体前部和眶额区域则介于两者之间。我们的研究结果为认知地图如何支持多尺度分层规划提供了新的见解。无论何时我们在世界上导航,我们都会在多个视野中代表我们的旅程:从我们的周围环境到我们的远程目标。那么,大脑中是如何同时呈现不同视野的这种认知地图的呢?在这里,我们应用了一种基于强化学习的分析方法,对参与者在虚拟家乡导航时获取的神经影像学数据进行了分析。我们研究了海马体和前额叶皮质(关键的认知地图区域)中的神经模式。我们在额-海马梯度中发现了具有多尺度视野的预测表示,其中最长的预测视野在前额叶皮质中,最短的在海马体后部。这些发现为多尺度神经表示指导目标导向导航的计算假设提供了经验支持。这提高了我们对日常现实距离导航中分层规划的理解。