Pinto Andressa P A, Pereira Humberto M, Zeraik Ana E, Ciol Heloisa, Ferreira Frederico M, Brandão-Neto José, DeMarco Ricardo, Navarro Marcos V A S, Risi Cristina, Galkin Vitold E, Garratt Richard C, Araujo Ana P U
From the Instituto de Física de São Carlos, Universidade de São Paulo, CEP: 13563-120, São Carlos, SP, Brazil.
the Programa de Pós-graduação em Genética Evolutiva e Biologia Molecular, UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
J Biol Chem. 2017 Jun 30;292(26):10899-10911. doi: 10.1074/jbc.M116.762229. Epub 2017 May 5.
Septins are filament-forming GTP-binding proteins involved in many essential cellular events related to cytoskeletal dynamics and maintenance. Septins can self-assemble into heterocomplexes, which polymerize into highly organized, cell membrane-interacting filaments. The number of septin genes varies among organisms, and although their structure and function have been thoroughly studied in opisthokonts (including animals and fungi), no structural studies have been reported for other organisms. This makes the single septin from (CrSEPT) a particularly attractive model for investigating whether functional homopolymeric septin filaments also exist. CrSEPT was detected at the base of the flagella in , suggesting that CrSEPT is involved in the formation of a membrane-diffusion barrier. Using transmission electron microscopy, we observed that recombinant CrSEPT forms long filaments with dimensions comparable with those of the canonical structure described for opisthokonts. The GTP-binding domain of CrSEPT purified as a nucleotide-free monomer that hydrolyzes GTP and readily binds its analog guanosine 5'-3--(thio)triphosphate. We also found that upon nucleotide binding, CrSEPT formed dimers that were stabilized by an interface involving the ligand (G-interface). Across this interface, one monomer supplied a catalytic arginine to the opposing subunit, greatly accelerating the rate of GTP hydrolysis. This is the first report of an arginine finger observed in a septin and suggests that CrSEPT may act as its own GTP-activating protein. The finger is conserved in all algal septin sequences, suggesting a possible correlation between the ability to form homopolymeric filaments and the accelerated rate of hydrolysis that it provides.
Septins是形成细丝的GTP结合蛋白,参与许多与细胞骨架动力学和维持相关的重要细胞事件。Septins可以自组装成异源复合物,这些复合物聚合成高度有序的、与细胞膜相互作用的细丝。Septin基因的数量在不同生物中有所不同,尽管它们的结构和功能在有尾类生物(包括动物和真菌)中已得到充分研究,但尚未有其他生物的结构研究报告。这使得来自[具体生物名称未给出]的单个Septin(CrSEPT)成为研究功能性同聚Septin细丝是否也存在的特别有吸引力的模型。在[具体生物名称未给出]的鞭毛基部检测到CrSEPT,这表明CrSEPT参与了膜扩散屏障的形成。使用透射电子显微镜,我们观察到重组CrSEPT形成的长细丝尺寸与有尾类生物中描述的典型结构相当。纯化的CrSEPT的GTP结合结构域作为无核苷酸单体存在,它能水解GTP并容易结合其类似物鸟苷5'-3--(硫代)三磷酸。我们还发现,在核苷酸结合后,CrSEPT形成了由涉及配体的界面(G界面)稳定的二聚体。在这个界面上,一个单体向相对的亚基提供一个催化精氨酸,极大地加速了GTP水解的速率。这是在Septin中观察到精氨酸指的首次报告,表明CrSEPT可能充当其自身的GTP激活蛋白。该精氨酸指在所有藻类Septin序列中都保守,这表明形成同聚细丝的能力与其提供的加速水解速率之间可能存在关联。