Suppr超能文献

利用葡萄汁和番茄汁绿色合成银纳米颗粒及其生物活性评估。

Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities.

作者信息

Zia Muhammad, Gul Shadab, Akhtar Javed, Haq Ihsan Ul, Abbasi Bilal Haider, Hussain Ahsan, Naz Sania, Chaudhary Muhammad Fayyaz

机构信息

Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.

Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan.

出版信息

IET Nanobiotechnol. 2017 Mar;11(2):193-199. doi: 10.1049/iet-nbt.2015.0099.

Abstract

The biosynthesis of silver nanoparticles (AgNPs) is substantial for its application in lots of fields. Tomato and grape fruit juices were used as a reducing and capping agents for the biosynthesis of AgNPs. Ultraviolet spectroscopic analysis offered peaks in the range of 396‒420 nm that indicate the production of AgNPs. Fourier transform infrared spectroscopy analysis revealed attachment of different functional groups with Ag ion in both tomato and grape fruit extracts NPs. The X‒ray diffraction analysis confirmed that the synthesised AgNPs have a face centred cubic confirmation. Scanning electron microscopy confirms the size of NPs that varies from 10 to 30 nm. The DPPH free radical scavenging assay, total antioxidant capacity, reducing power assay, total flavonoid contents and total phenolic contents determination confirmed that synthesised AgNPs are potent antioxidant agents; can be used as an effective scavenger of free radicals. Biosynthesised AgNPs also showed good antibacterial activity against , , , , and . Protein kinase inhibition activity showed a clear zone which indicates anticancerous potential of biosynthesised AgNPs. The efficacious bioactivities indicate that the tomato and grape derived AgNPs can be used efficiently in pharmaceutical and medical industries.

摘要

银纳米颗粒(AgNPs)的生物合成对于其在许多领域的应用至关重要。番茄汁和葡萄汁被用作AgNPs生物合成的还原剂和封端剂。紫外光谱分析在396 - 420 nm范围内出现峰值,表明AgNPs的产生。傅里叶变换红外光谱分析揭示了番茄和葡萄提取物纳米颗粒中不同官能团与银离子的结合。X射线衍射分析证实合成的AgNPs具有面心立方结构。扫描电子显微镜确定了纳米颗粒的尺寸在10至30 nm之间变化。DPPH自由基清除试验、总抗氧化能力、还原能力试验、总黄酮含量和总酚含量测定证实合成的AgNPs是有效的抗氧化剂;可作为自由基的有效清除剂。生物合成的AgNPs对 、 、 、 、 和 也表现出良好的抗菌活性。蛋白激酶抑制活性显示出清晰的区域,表明生物合成的AgNPs具有抗癌潜力。这些有效的生物活性表明,番茄和葡萄衍生的AgNPs可有效地用于制药和医疗行业。

相似文献

1
Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities.
IET Nanobiotechnol. 2017 Mar;11(2):193-199. doi: 10.1049/iet-nbt.2015.0099.
4
Antioxidant, antibacterial and anticancer properties of phytosynthesised Podlech extract mediated AgNPs.
IET Nanobiotechnol. 2017 Jun;11(4):485-492. doi: 10.1049/iet-nbt.2016.0101.
7
Green synthesis, characterisation and bioactivity of plant-mediated silver nanoparticles using root extract.
IET Nanobiotechnol. 2017 Apr;11(3):247-254. doi: 10.1049/iet-nbt.2016.0018.
8
Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria.
IET Nanobiotechnol. 2017 Apr;11(3):336-342. doi: 10.1049/iet-nbt.2016.0112.
9
Crystalline Silver Nanoparticles by Using Polygala tenuifolia Root Extract as a Green Reducing Agent.
J Nanosci Nanotechnol. 2015 Feb;15(2):1567-74. doi: 10.1166/jnn.2015.9031.
10
Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity.
Int J Nanomedicine. 2014 May 15;9:2431-8. doi: 10.2147/IJN.S61779. eCollection 2014.

引用本文的文献

3
Hierarchical plant extracts in silver nanoparticles preparation: Minuscular survey to achieve enhanced bioactivities.
Heliyon. 2024 Jan 6;10(2):e24303. doi: 10.1016/j.heliyon.2024.e24303. eCollection 2024 Jan 30.
8
Antioxidant, Cytotoxic, and Antimicrobial Potential of Silver Nanoparticles Synthesized using Extract.
Front Bioeng Biotechnol. 2022 Jul 18;10:907551. doi: 10.3389/fbioe.2022.907551. eCollection 2022.
10
Green Aspects in Molecularly Imprinted Polymers by Biomass Waste Utilization.
Polymers (Basel). 2021 Jul 23;13(15):2430. doi: 10.3390/polym13152430.

本文引用的文献

3
Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi.
Spectrochim Acta A Mol Biomol Spectrosc. 2012 Jul;93:95-9. doi: 10.1016/j.saa.2012.03.002. Epub 2012 Mar 13.
4
Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria.
J Appl Microbiol. 2012 May;112(5):841-52. doi: 10.1111/j.1365-2672.2012.05253.x. Epub 2012 Mar 28.
5
Antibacterial activity of some selected medicinal plants of Pakistan.
BMC Complement Altern Med. 2011 Jun 30;11:52. doi: 10.1186/1472-6882-11-52.
6
Fungal based synthesis of silver nanoparticles--an effect of temperature on the size of particles.
Colloids Surf B Biointerfaces. 2009 Nov 1;74(1):123-6. doi: 10.1016/j.colsurfb.2009.07.002. Epub 2009 Jul 14.
7
Rapid biological synthesis of silver nanoparticles using plant leaf extracts.
Bioprocess Biosyst Eng. 2009 Jan;32(1):79-84. doi: 10.1007/s00449-008-0224-6. Epub 2008 Apr 26.
8
Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate.
Appl Environ Microbiol. 2003 Jul;69(7):4278-81. doi: 10.1128/AEM.69.7.4278-4281.2003.
9
A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus.
J Biomed Mater Res. 2000 Dec 15;52(4):662-8. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3.
10
Single-target molecule detection with nonbleaching multicolor optical immunolabels.
Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):996-1001. doi: 10.1073/pnas.97.3.996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验