[理解基于体素的形态测量学]
[Understanding Voxel-Based Morphometry].
作者信息
Nemoto Kiyotaka
机构信息
Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba.
出版信息
Brain Nerve. 2017 May;69(5):505-511. doi: 10.11477/mf.1416200776.
Voxel-based morphometry (VBM) is a neuroimaging technique that investigates focal differences in brain anatomy. The core process of VBM is segmenting the brain into grey matter, white matter, and cerebrospinal fluid, warping the segmented images to a template space and smoothing. Thereafter, statistical analysis is performed on the basis of the general linear model. Although the basis of VBM is constant, the algorithm has been changed. Classical VBM simply employed anatomical normalization, segmentation, and smoothing. This changed to optimized VBM, which normalized the brain using parameters derived from grey matter image normalization, cleaned up non-brain tissue images, and utilized Jacobian modulation. Further, unified segmentation-a probabilistic framework that enables image registration, tissue classification, and bias correction to be combined within the same generative model-was introduced. The DARTEL algorithm then improved the accuracy of image registration. Currently, researchers can use an extension of unified segmentation with some features such as an improved registration model, extended set of tissue probability maps, or more robust initial affine registration. Those who utilize VBM must pay attention to the choice of VBM algorithm, as data interpretation differs with each algorithm.
基于体素的形态测量学(VBM)是一种研究脑解剖结构局灶性差异的神经成像技术。VBM的核心过程是将大脑分割为灰质、白质和脑脊液,将分割后的图像扭曲到模板空间并进行平滑处理。此后,基于一般线性模型进行统计分析。虽然VBM的基础是固定的,但算法已经发生了变化。经典的VBM只是简单地采用解剖学归一化、分割和平滑处理。这后来演变成了优化的VBM,它使用从灰质图像归一化中导出的参数对大脑进行归一化,清理非脑组织图像,并采用雅可比调制。此外,还引入了统一分割——一种概率框架,能够在同一生成模型中结合图像配准、组织分类和偏差校正。随后,DARTEL算法提高了图像配准的准确性。目前,研究人员可以使用统一分割的扩展版本,它具有一些特性,如改进的配准模型、扩展的组织概率图谱集或更稳健的初始仿射配准。使用VBM的人必须注意VBM算法的选择,因为每种算法的数据解释都有所不同。