Suppr超能文献

Inhibition of glycolysis alters potassium ion transport and mitochondrial redox activity in rat brain.

作者信息

Raffin C N, Sick T J, Rosenthal M

机构信息

Department of Neurology, University of Miami School of Medicine, Florida 33101.

出版信息

J Cereb Blood Flow Metab. 1988 Dec;8(6):857-65. doi: 10.1038/jcbfm.1988.143.

Abstract

To examine the relationships between brain glycolysis, ion transport, and mitochondrial reduction/oxidation (redox) activity, extracellular potassium ion activity (K+0) and redox shifts of cytochrome oxidase (cytochrome a,a3) were recorded previous to and during superfusion of rat cerebral cortex with the glycolytic inhibitor iodoacetic acid (IAA). IAA produced oxidation of cytochrome a,a3, increased local oxygenation, increased K+0, and, in response to neuronal activation, slowed rates of K+0 reaccumulation. Rates of rereduction of cytochrome a,a3, after the oxidation of this cytochrome by stimulation, were also slowed by IAA. These effects of IAA demonstrate the dependence of K+0 reaccumulation on the integrity of glycolysis, support the concept that active processes are involved in brain ion transport, and suggest a link between ATP supplied by glycolysis and ion transport activity. These data are also compatible with the suggestion that residual dysfunctions after brain ischemia result from derangements in glycolytic functioning rather than from limitations in oxygen availability or oxidative metabolic activity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验