Department of Molecular and Cell Biology, University of California, Berkeley, USA.
Helen Wills Neuroscience Institute, University of California, Berkeley, USA.
J Physiol. 2018 May 1;596(9):1639-1657. doi: 10.1113/JP274986. Epub 2018 Jan 24.
Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers.
Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms.
理解大脑皮质回路中突触兴奋和抑制之间的平衡,以及这如何促成皮质节律,对于解释皮质中的信息处理至关重要。本研究使用小鼠皮质的皮质层特异性光遗传学激活,表明任何皮质层中的兴奋性神经元都可以驱动强大的伽马节律,而抑制则平衡兴奋。其净效应是使各层的活动保持在控制之下,但同时促进活动向下游层传播。这些数据表明,节律产生回路存在于皮质的所有主要层中,并提供了影响跨层信息流动的皮质层特异性的兴奋和抑制平衡。
节律性活动可以在皮质层内和层间同步神经集合。虽然已经在所有层中观察到了伽马波段的节律性,但皮质中神经元同步的分层来源和功能影响仍不完全清楚。本文通过皮质层特异性光遗传学刺激表明,小鼠初级视觉皮层的任何皮质层中的兴奋性神经元群体足以有力地引发伽马波段的神经元振荡。在各层内,抑制平衡兴奋并使活动保持在控制之下。在层间,跨层输出克服抑制并驱动下游放电。这些数据表明,节律产生回路存在于皮质的所有主要层中,但提供了皮质层特异性的兴奋和抑制平衡,这可能动态地塑造皮质回路中的信息流动。这些数据可以帮助解释皮质层间的兴奋/抑制(E/I)平衡如何影响信息处理,并揭示皮质伽马节律的多样性本质和功能影响。