Suppr超能文献

东北大西洋罗科尔海台滑坡引发海啸的统计仿真

Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic.

作者信息

Salmanidou D M, Guillas S, Georgiopoulou A, Dias F

机构信息

School of Mathematics and Statistics, University College Dublin, Dublin, Ireland.

Earth Institute, University College Dublin, Dublin, Ireland.

出版信息

Proc Math Phys Eng Sci. 2017 Apr;473(2200):20170026. doi: 10.1098/rspa.2017.0026. Epub 2017 Apr 12.

Abstract

Statistical methods constitute a useful approach to understand and quantify the uncertainty that governs complex tsunami mechanisms. Numerical experiments may often have a high computational cost. This forms a limiting factor for performing uncertainty and sensitivity analyses, where numerous simulations are required. Statistical emulators, as surrogates of these simulators, can provide predictions of the physical process in a much faster and computationally inexpensive way. They can form a prominent solution to explore thousands of scenarios that would be otherwise numerically expensive and difficult to achieve. In this work, we build a statistical emulator of the deterministic codes used to simulate submarine sliding and tsunami generation at the Rockall Bank, NE Atlantic Ocean, in two stages. First we calibrate, against observations of the landslide deposits, the parameters used in the landslide simulations. This calibration is performed under a Bayesian framework using Gaussian Process (GP) emulators to approximate the landslide model, and the discrepancy function between model and observations. Distributions of the calibrated input parameters are obtained as a result of the calibration. In a second step, a GP emulator is built to mimic the coupled landslide-tsunami numerical process. The emulator propagates the uncertainties in the distributions of the calibrated input parameters inferred from the first step to the outputs. As a result, a quantification of the uncertainty of the maximum free surface elevation at specified locations is obtained.

摘要

统计方法是理解和量化控制复杂海啸机制的不确定性的一种有用方法。数值实验通常计算成本很高。这成为进行不确定性和敏感性分析的一个限制因素,因为进行这些分析需要大量的模拟。统计模拟器作为这些模拟器的替代物,可以以更快且计算成本更低的方式提供物理过程的预测。它们可以成为探索数千种场景的突出解决方案,否则这些场景在数值计算上会成本高昂且难以实现。在这项工作中,我们分两个阶段构建了用于模拟北大西洋罗科尔海台海底滑坡和海啸生成的确定性代码的统计模拟器。首先,我们根据滑坡沉积物的观测数据校准滑坡模拟中使用的参数。这种校准是在贝叶斯框架下使用高斯过程(GP)模拟器进行的,以近似滑坡模型以及模型与观测值之间的差异函数。校准后得到校准输入参数的分布。第二步,构建一个GP模拟器来模拟滑坡 - 海啸耦合数值过程。该模拟器将第一步推断出的校准输入参数分布中的不确定性传播到输出结果。结果,获得了指定位置处最大自由表面高程的不确定性量化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0764/5415699/f0513c640955/rspa20170026-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验